植物生态学报 ›› 2019, Vol. 43 ›› Issue (3): 238-244.DOI: 10.17521/cjpe.2018.0316
张希金1,宋坤1,2,3,*(),蒲发光4,高志文1,倪田品1,褚兴行1,王泽英1,商侃侃5,达良俊1,2,3,*(
)
收稿日期:
2018-12-17
修回日期:
2019-02-27
出版日期:
2019-03-20
发布日期:
2019-04-23
通讯作者:
宋坤,达良俊
基金资助:
ZHANG Xi-Jin1,SONG Kun1,2,3,*(),PU Fa-Guang4,GAO Zhi-Wen1,NI Tian-Pin1,CHU Xing-Hang1,WANG Ze-Ying1,SHANG Kan-Kan5,DA Liang-Jun1,2,3,*(
)
Received:
2018-12-17
Revised:
2019-02-27
Online:
2019-03-20
Published:
2019-04-23
Contact:
SONG Kun,DA Liang-Jun
Supported by:
摘要:
木本植物次生木质部轴向薄壁组织和射线薄壁组织在物质存储和转运等功能中起着重要的作用, 剖析次生木质部薄壁组织组成有助于深入探究其功能, 而小枝木质部薄壁组织组成特征还缺乏研究。该研究以天马国家级自然保护区内的18种木本植物幼树为研究对象, 测算了各物种小枝木质部薄壁组织的组成含量并检测了其谱系信号, 结合有关树干薄壁组织含量数据集, 初步探讨木本植物小枝木质部薄壁组织含量特征。研究结果表明: (1) 18种木本植物幼树小枝的薄壁组织总含量为9.96%-18.56%, 平均为14.80%; 其中射线薄壁组织含量为7.74%-15.45%, 高于轴向薄壁组织的含量(1.13%-7.49%); (2)小枝中薄壁组织总含量呈低于树干的趋势, 其中小枝射线薄壁组织含量低于树干, 而轴向薄壁组织含量高于树干, 这可能是由器官差异和生活史阶段差异造成的; (3)轴向薄壁组织的含量具有显著的谱系信号, 即物种亲缘关系越近其含量越相近。该研究初步验证了木本植物次生木质部薄壁组织的谱系信号, 同时暗示了器官和生活史阶段差异对薄壁组织含量具有重要影响。
张希金, 宋坤, 蒲发光, 高志文, 倪田品, 褚兴行, 王泽英, 商侃侃, 达良俊. 安徽大别山木本植物幼树小枝薄壁组织组成特征初探. 植物生态学报, 2019, 43(3): 238-244. DOI: 10.17521/cjpe.2018.0316
ZHANG Xi-Jin, SONG Kun, PU Fa-Guang, GAO Zhi-Wen, NI Tian-Pin, CHU Xing-Hang, WANG Ze-Ying, SHANG Kan-Kan, DA Liang-Jun. Study on compositions of parenchyma in twigs of woody saplings in Dabie Mountains, Anhui, China. Chinese Journal of Plant Ecology, 2019, 43(3): 238-244. DOI: 10.17521/cjpe.2018.0316
图1 小枝木质部显微结构图。A, 千金榆。B, 青皮木。图中射线状分布被染成蓝色-紫色的细胞是射线薄壁组织(RP), 导管周围分布或切线带状分布被染成蓝色-紫色的细胞是轴向薄壁组织(AP)。
Fig. 1 Dyed image of cross sections of twigs photographed by optical microscope. A, Carpinus cordata. B, Schoepfia jasminodora. Ray parenchyma cells arranged radially and were dyed blue to purple, while axial parenchyma cells arranged tangentially or paratracheally in the two pictures.
物种 Species | 海拔 Altitude (m) | 总计 Total number | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
马鬃岭 Mazongling | 天堂寨 Tiantangzhai | ||||||||||
592 | 837 | 920 | 960 | 1 130 | 740 | 922 | 1 000 | 1 017 | 1 200 | ||
白檀 Symplocos paniculata | 1 | 1 | 1 | 3 | |||||||
豹皮樟 Litsea coreana var. sinensis | 1 | 1 | 1 | 3 | |||||||
大果山胡椒 Lindera praecox | 3 | 3 | 3 | 1 | 3 | 13 | |||||
灯台树 Bothrocaryum controversum | 1 | 2 | 1 | 4 | |||||||
芬芳安息香 Styrax odoratissimus | 2 | 2 | 4 | ||||||||
海金子 Pittosporum illicioides | 1 | 3 | 1 | 1 | 6 | ||||||
黄丹木姜子 Litsea elongata | 3 | 1 | 1 | 2 | 3 | 10 | |||||
尖萼梣 Fraxinus odontocalyx | 2 | 2 | 4 | ||||||||
雷公鹅耳枥 Carpinus viminea | 2 | 1 | 3 | ||||||||
橉木 Padus buergeriana | 3 | 3 | |||||||||
千金榆 Carpinus cordata | 3 | 3 | |||||||||
青冈 Cyclobalanopsis glauca | 3 | 3 | |||||||||
青皮木 Schoepfia jasminodora | 3 | 3 | |||||||||
山胡椒 Lindera glauca | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 11 | ||
四照花 Cornus kousa subsp. chinensis | 1 | 1 | 3 | 5 | |||||||
小叶白辛树 Pterostyrax corymbosus | 1 | 1 | 1 | 1 | 3 | 7 | |||||
细叶青冈 Cyclobalanopsis gracilis | 2 | 2 | 3 | 1 | 3 | 3 | 14 | ||||
紫茎 Stewartia sinensis | 3 | 3 |
表1 大别山木本植物采样信息汇总
Table 1 Characteristics of woody samplings from the Dabie Mountains
物种 Species | 海拔 Altitude (m) | 总计 Total number | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
马鬃岭 Mazongling | 天堂寨 Tiantangzhai | ||||||||||
592 | 837 | 920 | 960 | 1 130 | 740 | 922 | 1 000 | 1 017 | 1 200 | ||
白檀 Symplocos paniculata | 1 | 1 | 1 | 3 | |||||||
豹皮樟 Litsea coreana var. sinensis | 1 | 1 | 1 | 3 | |||||||
大果山胡椒 Lindera praecox | 3 | 3 | 3 | 1 | 3 | 13 | |||||
灯台树 Bothrocaryum controversum | 1 | 2 | 1 | 4 | |||||||
芬芳安息香 Styrax odoratissimus | 2 | 2 | 4 | ||||||||
海金子 Pittosporum illicioides | 1 | 3 | 1 | 1 | 6 | ||||||
黄丹木姜子 Litsea elongata | 3 | 1 | 1 | 2 | 3 | 10 | |||||
尖萼梣 Fraxinus odontocalyx | 2 | 2 | 4 | ||||||||
雷公鹅耳枥 Carpinus viminea | 2 | 1 | 3 | ||||||||
橉木 Padus buergeriana | 3 | 3 | |||||||||
千金榆 Carpinus cordata | 3 | 3 | |||||||||
青冈 Cyclobalanopsis glauca | 3 | 3 | |||||||||
青皮木 Schoepfia jasminodora | 3 | 3 | |||||||||
山胡椒 Lindera glauca | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 11 | ||
四照花 Cornus kousa subsp. chinensis | 1 | 1 | 3 | 5 | |||||||
小叶白辛树 Pterostyrax corymbosus | 1 | 1 | 1 | 1 | 3 | 7 | |||||
细叶青冈 Cyclobalanopsis gracilis | 2 | 2 | 3 | 1 | 3 | 3 | 14 | ||||
紫茎 Stewartia sinensis | 3 | 3 |
物种 Species | 射线薄壁组织 RP (%) | 轴向薄壁组织 AP (%) | 总薄壁组织 RAP (%) |
---|---|---|---|
白檀 Symplocos paniculata | 15.45 ± 3.37 | 3.11 ± 1.62 | 18.56 ± 4.96 |
豹皮樟 Litsea coreana var. sinensis | 11.92 ± 2.63 | 4.18 ± 4.46 | 16.10 ± 7.09 |
大果山胡椒 Lindera praecox | 12.65 ± 3.32 | 3.76 ± 1.36 | 16.41 ± 3.90 |
灯台树 Bothrocaryum controversum | 9.59 ± 1.82 | 1.84 ± 0.53 | 11.43 ± 2.18 |
芬芳安息香 Styrax odoratissimus | 12.71 ± 2.88 | 1.29 ± 0.83 | 14.00 ± 3.61 |
海金子 Pittosporum illicioides | 9.32 ± 2.92 | 3.93 ± 0.65 | 13.25 ± 2.63 |
黄丹木姜子 Litsea elongata | 13.88 ± 3.78 | 3.51 ± 1.59 | 17.39 ± 4.72 |
尖萼梣 Fraxinus odontocalyx | 9.57 ± 2.28 | 3.07 ± 1.28 | 12.64 ± 2.63 |
雷公鹅耳枥 Carpinus viminea | 10.62 ± 0.88 | 4.45 ± 2.57 | 15.07 ± 3.45 |
橉木 Padus buergeriana | 8.72 ± 0.92 | 1.24 ± 0.58 | 9.96 ± 0.72 |
千金榆 Carpinus cordata | 13.05 ± 1.68 | 4.45 ± 1.12 | 17.49 ± 1.68 |
青冈 Cyclobalanopsis glauca | 8.91 ± 5.09 | 6.13 ± 0.81 | 15.03 ± 5.86 |
青皮木 Schoepfia jasminodora | 7.74 ± 4.06 | 7.49 ± 1.19 | 15.22 ± 5.24 |
山胡椒 Lindera glauca | 12.02 ± 1.76 | 4.02 ± 1.97 | 16.04 ± 2.33 |
四照花 Cornus kousa subsp. chinensis | 12.55 ± 1.79 | 2.14 ± 0.71 | 14.69 ± 1.96 |
小叶白辛树 Pterostyrax corymbosus | 9.97 ± 3.64 | 1.13 ± 0.64 | 11.10 ± 4.19 |
细叶青冈 Cyclobalanopsis gracilis | 9.71 ± 2.38 | 6.36 ± 2.65 | 16.07 ± 3.62 |
紫茎 Stewartia sinensis | 12.21 ± 1.17 | 3.77 ± 1.53 | 15.98 ± 2.00 |
最大值 Max | 15.45 | 7.49 | 18.56 |
最小值 Min | 7.74 | 1.13 | 9.96 |
平均值 Average | 11.14 | 3.66 | 14.80 |
变异系数 Coefficient of variation | 18.63 | 48.65 | 15.84 |
表2 研究区域各物种薄壁组织含量(平均值±标准偏差)
Table 2 Amount of parenchyma of species in the study region (mean ± SD)
物种 Species | 射线薄壁组织 RP (%) | 轴向薄壁组织 AP (%) | 总薄壁组织 RAP (%) |
---|---|---|---|
白檀 Symplocos paniculata | 15.45 ± 3.37 | 3.11 ± 1.62 | 18.56 ± 4.96 |
豹皮樟 Litsea coreana var. sinensis | 11.92 ± 2.63 | 4.18 ± 4.46 | 16.10 ± 7.09 |
大果山胡椒 Lindera praecox | 12.65 ± 3.32 | 3.76 ± 1.36 | 16.41 ± 3.90 |
灯台树 Bothrocaryum controversum | 9.59 ± 1.82 | 1.84 ± 0.53 | 11.43 ± 2.18 |
芬芳安息香 Styrax odoratissimus | 12.71 ± 2.88 | 1.29 ± 0.83 | 14.00 ± 3.61 |
海金子 Pittosporum illicioides | 9.32 ± 2.92 | 3.93 ± 0.65 | 13.25 ± 2.63 |
黄丹木姜子 Litsea elongata | 13.88 ± 3.78 | 3.51 ± 1.59 | 17.39 ± 4.72 |
尖萼梣 Fraxinus odontocalyx | 9.57 ± 2.28 | 3.07 ± 1.28 | 12.64 ± 2.63 |
雷公鹅耳枥 Carpinus viminea | 10.62 ± 0.88 | 4.45 ± 2.57 | 15.07 ± 3.45 |
橉木 Padus buergeriana | 8.72 ± 0.92 | 1.24 ± 0.58 | 9.96 ± 0.72 |
千金榆 Carpinus cordata | 13.05 ± 1.68 | 4.45 ± 1.12 | 17.49 ± 1.68 |
青冈 Cyclobalanopsis glauca | 8.91 ± 5.09 | 6.13 ± 0.81 | 15.03 ± 5.86 |
青皮木 Schoepfia jasminodora | 7.74 ± 4.06 | 7.49 ± 1.19 | 15.22 ± 5.24 |
山胡椒 Lindera glauca | 12.02 ± 1.76 | 4.02 ± 1.97 | 16.04 ± 2.33 |
四照花 Cornus kousa subsp. chinensis | 12.55 ± 1.79 | 2.14 ± 0.71 | 14.69 ± 1.96 |
小叶白辛树 Pterostyrax corymbosus | 9.97 ± 3.64 | 1.13 ± 0.64 | 11.10 ± 4.19 |
细叶青冈 Cyclobalanopsis gracilis | 9.71 ± 2.38 | 6.36 ± 2.65 | 16.07 ± 3.62 |
紫茎 Stewartia sinensis | 12.21 ± 1.17 | 3.77 ± 1.53 | 15.98 ± 2.00 |
最大值 Max | 15.45 | 7.49 | 18.56 |
最小值 Min | 7.74 | 1.13 | 9.96 |
平均值 Average | 11.14 | 3.66 | 14.80 |
变异系数 Coefficient of variation | 18.63 | 48.65 | 15.84 |
图2 小枝与树干薄壁组织含量比较(平均值±标准偏差, n = 8)。树干数据来自Zheng和Martínez-Cabrera (2013)。AP, 轴向薄壁组织; RP, 射线薄壁组织; RAP, 总薄壁组织。不同小写字母代表差异显著(p < 0.05)。
Fig. 2 Differences of the amount of parenchyma in sapling twigs and trunks of adult trees (mean ± SD, n = 8). The data of the amount of parenchyma in trunks were derived from Zheng & Martínez-Cabrera (2013). AP, axial parenchyma; RP, ray parenchyma; RAP, RP + AP. Different lowercase letters indicate significant differences (p < 0.05).
薄壁组织 Parenchyma | K | p |
---|---|---|
射线薄壁组织 RP | 0.62 | 0.151 |
轴向薄壁组织 AP | 1.03 | 0.004 |
总薄壁组织 RAP | 0.65 | 0.152 |
表3 大别山18种木本植物小枝薄壁组织含量的谱系信号强度
Table 3 Phylogenetic signal of parenchyma in twigs of 18 woody saplings in the Dabie Mountains
薄壁组织 Parenchyma | K | p |
---|---|---|
射线薄壁组织 RP | 0.62 | 0.151 |
轴向薄壁组织 AP | 1.03 | 0.004 |
总薄壁组织 RAP | 0.65 | 0.152 |
[1] | Anhui Tianma National Nature Reserve Administration, Anhui Forestry Survey and Planning Institute ( 2014). Comprehensive Scientific Investigation Report of Tianma National Nature Reserve in Anhui. Anhui Science & Technology Publishing House, Hefei. |
[ 安徽天马国家级自然保护区管理局, 安徽省林业调查规划院 ( 2014). 安徽天马国家级自然保护区综合科学考察报告. 安徽科学技术出版社, 合肥.] | |
[2] | Bel AJEV ( 1990). Xylem-phloem exchange via the rays: The undervalued route of transport. Journal of Experimental Botany, 41, 631-644. |
[3] | Bhat KM, Bhat KV, Dhamodaran TK ( 1985). Wood and bark properties of branches of selected tree species growing in Kerala. KFRI Research Report, Kerala Forest Research Institute. https://pdfs.semanticscholar.org/6d17/0853fce456bb543f7e060b3030b435dc9a9f.pdf. Cited: 2018-12-17. |
[4] | Blomberg SP, Garland T, Ives AR ( 2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745. |
[5] | Burgert I, Eckstein D ( 2001). The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees. Trees, 15, 168-170. |
[6] | Cao K, Rao MD, Yu JZ, Liu XJ, Mi XC, Chen JH ( 2013). The phylogenetic signal of functional traits and their effects on community structure in an evergreen broad-leaved forest. Biodiversity Science, 21, 564-571. |
[ 曹科, 饶米德, 余建中, 刘晓娟, 米湘成, 陈建华 ( 2013). 古田山木本植物功能性状的系统发育信号及其对群落结构的影响. 生物多样性, 21, 564-571.] | |
[7] | Du Y, Mao L, Queenborough SA, Freckleton RP, Chen B, Ma K ( 2015). Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China. Global Ecology and Biogeography, 24, 928-938. |
[8] | Hearn DJ ( 2009). Developmental patterns in anatomy are shared among separate evolutionary origins of stem succulent and storage root-bearing growth habits in Adenia (Passifloraceae). American Journal of Botany, 96, 1941-1956. |
[9] | Hu Y, Yan L, Li H ( 2006). Studies on the anatomical characteristics of the stems of 14 desert plants. Journal of Arid Land Resources and Environment, 20, 204-210. |
[ 胡云, 燕玲, 李红 ( 2006). 14种荒漠植物茎的解剖结构特征分析. 干旱区资源与环境, 20, 204-210.] | |
[10] | Martínez-Cabrera HI, Zheng J, Estrada-Ruiz E ( 2017). Wood functional disparity lags behind taxonomic diversification in angiosperms. Review of Palaeobotany & Palynology, 246, 251-257. |
[11] | Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MAF, Martínez-Cabrera HI, Mcglinn DJ, Wheeler E, Zheng JM, Ziemińska K, Jansen S ( 2016). A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 209, 1553-1565. |
[12] | Olano JM, Arzac A, García-Cervigón AI, von Arx G, Rozas V ( 2013). New star on the stage: Amount of ray parenchyma in tree rings shows a link to climate. New Phytologist, 198, 486-495. |
[13] | Plavcová L, Hoch G, Morris H, Ghiasi S, Jansen S ( 2016). The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. American Journal of Botany, 103, 1-10. |
[14] | Plavcová L, Jansen S ( 2015). The role of xylem parenchyma in the storage and utilization of Nonstructural Carbohydrates. In: Hacke U ed. Functional and Ecological Xylem Anatomy. Springer, Cham. 209-234. |
[15] | Poorter L, Mcdonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U ( 2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest species. New Phytologist, 185, 481-492. |
[16] | Rungwattana K, Hietz P ( 2018). Radial variation of wood functional traits reflect size-related adaptations of tree mechanics and hydraulics. Functional Ecology, 32, 260-272. |
[17] | Spicer R ( 2014). Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. Journal of Experimental Botany, 65, 1829-1848. |
[18] | Tan HY, Hao BZ, Wu JL ( 2000). Seasonal ultrastructural changes of secondary phloem parenchyma cells in a tropical tree, Dalbergia odorifera. Acta Botanica Yunnanica, 22, 461-466. |
[ 谭海燕, 郝秉中, 吴继林 ( 2000). 热带落叶树降香黄檀次生韧皮部薄壁组织细胞超微结构的季节变化. 云南植物研究, 22, 461-466.] | |
[19] | Wei X, Liu Y, Chen HB ( 2008). Anatomical and functional heterogeneity among different root orders of Phellodendron amurense. Journal of Plant Ecology (Chinese Version), 32, 1238-1247. |
[ 卫星, 刘颖, 陈海波 ( 2008). 黄波罗不同根序的解剖结构及其功能异质性. 植物生态学报, 32, 1238-1247.] | |
[20] | Wheeler EA, Baas P, Rodgers S ( 2007). Variations in dicot wood anatomy: A global analysis based on the insidewood database. Iawa Journal, 28, 229-258. |
[21] | Yang XD, Ji PP, Re YS, Li HX ( 2018). Relationship between flowering phenology and phylogeny in 31 woody plants of Urumqi, Xinjiang. Acta Ecologica Sinica, 38, 1003-1015. |
[ 杨晓东, 姬盼盼, 热依沙, 李宏侠 ( 2018). 31种木本植物开花物候与系统发育的关系. 生态学报, 38, 1003-1015.] | |
[22] | Zhang HY, Wang CK, Wang XC ( 2013). Comparison of concentrations of non-structural carbohydrates between new twigs and old branches for 12 temperate species. Acta Ecologica Sinica, 33, 5675-5685. |
[ 张海燕, 王传宽, 王兴昌 ( 2013). 温带12个树种新老树枝非结构性碳水化合物浓度比较. 生态学报, 33, 5675-5685.] | |
[23] | Zhang HY, Wang CK, Wang XC ( 2015). Within-crown variation in concentrations of non-structural carbohydrates of five temperate tree species. Acta Ecologica Sinica, 35, 6496-6506. |
[ 张海燕, 王传宽, 王兴昌 ( 2015). 5个温带树种冠层枝叶非结构性碳水化合物浓度的空间变异. 生态学报, 35, 6496-6506.] | |
[24] | Zheng GQ, Bao H, Yang J, Su XL, Hu ZH ( 2015). Ultrastructure of phloem and the flesh sink-cells during fruit development of Lucium barbarum. Acta Botanica Boreali-Occidentalia Sinica, 35, 2211-2218. |
[ 郑国琦, 包晗, 杨涓, 苏雪玲, 胡正海 ( 2015). 宁夏枸杞果实韧皮部及其周围细胞超微结构研究. 西北植物学报, 35, 2211-2218.] | |
[25] | Zheng GQ, Zhao M, Zhang L, Zheng GB, Hu ZH ( 2010). Structures and compositions of root and stem secondary xylem anatomy of Lycium barbarum with different irrigation amounts. Acta Botanica Boreali-Occidentalia Sinica, 30, 2170-2176. |
[ 郑国琦, 赵猛, 张磊, 郑国保, 胡正海 ( 2010). 灌水量对枸杞根茎次生木质部结构和组成的影响. 西北植物学报, 30, 2170-2176.] | |
[26] | Zheng JM, Martínez-Cabrera HI ( 2013). Wood anatomical correlates with theoretical conductivity and wood density across China: Evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany, 112, 927-935. |
[27] | Ziemińska K, Butler DW, Gleason SM, Wright IJ, Westoby M ( 2013). Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants , 5, plt046. DOI: 101093/aobpla/plt046. |
[1] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[2] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[3] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[4] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[5] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[6] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[7] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[8] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[9] | 郑景明, 刘洪妤. 采用Strauss-Hardcore模型研究不同导管构型被子植物的导管空间分布特征[J]. 植物生态学报, 2021, 45(9): 1024-1032. |
[10] | 罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941. |
[11] | 张效境, 梁潇洒, 马望, 王正文. 呼伦贝尔草地植物茎秆和叶片中养分的时间动态与回收[J]. 植物生态学报, 2021, 45(7): 738-748. |
[12] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[13] | 方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650-658. |
[14] | 倪鸣源, ARITSARA Amy Ny Aina, 王永强, 黄冬柳, 项伟, 万春燕, 朱师丹. 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析[J]. 植物生态学报, 2021, 45(4): 394-403. |
[15] | 刘璐, 葛结林, 舒化伟, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林碳氮磷化学计量比[J]. 植物生态学报, 2019, 43(6): 482-489. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19