植物生态学报 ›› 2020, Vol. 44 ›› Issue (6): 583-597.DOI: 10.17521/cjpe.2019.0176
所属专题: 全球变化与生态系统
• 综述 • 下一篇
收稿日期:
2019-07-08
接受日期:
2020-04-01
出版日期:
2020-06-20
发布日期:
2020-06-12
通讯作者:
* 朱彪: ORCID:0000-0001-9858-7943, biaozhu@pku.edu.cn
作者简介:
冯继广: ORCID: 0000-0002-7342-9313
基金资助:
Received:
2019-07-08
Accepted:
2020-04-01
Online:
2020-06-20
Published:
2020-06-12
Contact:
ZHU Biao: ORCID:0000-0001-9858-7943, biaozhu@pku.edu.cn
Supported by:
摘要:
人为活动所导致的氮、磷输入和大气氮、磷沉降使生态系统中的氮、磷可利用性大幅提高, 对陆地生态系统的碳循环过程产生了显著影响。树木生长和森林生产力在全球碳循环中发挥着重要作用, 它决定着陆地碳固存的大小和方向。目前, 在全球范围内开展了很多氮、磷添加调控树木生长和森林生产力的野外控制实验, 但是研究结果并不一致, 受到多种生物、环境和实验处理条件等因素的影响。该文从野外氮添加和磷添加实验的文献数量、实验数量及其全球空间分布三个方面概述了氮、磷添加对树木生长和森林生产力影响的研究现状, 并总结了氮、磷添加实验中树木生长和森林生产力的评估方法, 包括相对生长速率和绝对增长量。基于相关的研究结果, 阐述了氮、磷添加影响树木生长和森林生产力的调控因素及其潜在影响机制, 包括气候、树木径级与林龄、植物功能性状(共生菌根类型、树木固氮属性和保守性与获得性性状)、植物和微生物相互作用关系、区域养分沉降速率和实验处理条件等。最后, 基于当前的研究进行了系统总结, 并指出今后需要加强的几个方面的研究, 以期为后续研究提供参考: 树木生长响应氮、磷添加的生理学机制, 树木各部分生长对氮、磷添加响应的权衡与分配, 植物功能性状在调节与预测树木生长响应氮、磷添加中的作用, 树木之间的竞争关系如何调控氮、磷添加对树木生长的影响, 以及开展长期的和联网的氮、磷添加对树木生长和森林生产力影响的野外控制实验。
冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展. 植物生态学报, 2020, 44(6): 583-597. DOI: 10.17521/cjpe.2019.0176
FENG Ji-Guang, ZHU Biao. A review on the effects of nitrogen and phosphorus addition on tree growth and productivity in forest ecosystems. Chinese Journal of Plant Ecology, 2020, 44(6): 583-597. DOI: 10.17521/cjpe.2019.0176
图1 氮(N)和磷(P)添加对树木生长和森林生产力影响的论文数量和实验数量。 A, 1970-2019年每年的论文数量及累积论文数量。B, 不同N、P添加处理在不同气候区森林的实验数量。N表示该研究中只有N添加; P表示该研究中只有P添加; N, P表示该研究中有单独的N和单独的P添加; N, P, NP表明该研究中包含单独的N、单独的P和N、P共同添加。
Fig. 1 Number of papers and experiments investigating the effects of nitrogen (N) and/or phosphorus (P) addition on tree growth and productivity in forest ecosystems. A, The number of papers in each year and the accumulated number of papers between the year 1970 and 2019. B, The number of experiments with different treatment of nitrogen and phosphorus addition. N represents only N addition in the case study; P represents only P addition in the case study; N, P represent only N and only P addition in the case study; N, P, NP represents only N, only P and N plus P addition in the case study.
图2 氮(N)和磷(P)添加对森林树木生长及生产力影响的案例研究全球分布图。图中的横线表示基于纬度划分的不同气候区的森林分布界限, 包括热带森林(23.5° S-23.5° N)、北方森林(46°-66° N)和温带森林(介于热带和北方森林的纬度之间)。 N表示该研究中只有N添加; P表示该研究中只有P添加; N, P表示该研究中有单独的N和单独的P添加; N, P, NP表明该研究中包含单独的N、单独的P和N、P共同添加。该图使用ArcGIS 10.2.2绘制。
Fig. 2 Global distribution of case studies investigating the effects of nitrogen (N) and/or phosphorus (P) addition on tree growth and productivity in forest ecosystems. The horizontal lines in the figure indicate the distribution boundaries of forests in different climatic regions based on latitude, including tropical forest (23.5° S-23.5° N), boreal forest (46°-66° N), and temperate forest (between the tropical and boreal latitudes). N represents only N addition in the case study; P represents only P addition in the case study; N, P represent only N and only P addition in the case study; N, P, NP represents only N, only P and N plus P addition in the case study. This map was drawn using the software ArcGIS 10.2.2.
衡量方法 Method | 计算公式 Calculation equation | 单位 Unit | 参考文献 Reference |
---|---|---|---|
相对生长速率 Relative growth rate (RGR) | $RGR=\frac{\text{ln}DB{{H}_{{{t}_{2}}}}-\text{ln}DB{{H}_{{{t}_{1}}}}}{{{t}_{2}}-{{t}_{1}}}$ | mm·mm-1·a-1 | |
$RGR=\frac{\text{ln}B{{A}_{{{t}_{2}}}}-\text{ln}B{{A}_{{{t}_{1}}}}}{{{t}_{2}}-{{t}_{1}}}$ | mm2·mm-2·a-1 | ||
$RGR=\frac{\text{ln}B{{P}_{{{t}_{2}}}}-\text{ln}B{{P}_{{{t}_{1}}}}}{{{t}_{2}}-{{t}_{1}}}$ | kg·kg-1·a-1 | ||
$RGR=\frac{B{{A}_{{{t}_{2}}}}-B{{A}_{{{t}_{1}}}}\text{ }\!\!~\!\!\text{ }}{\text{B}{{\text{A}}_{{{t}_{1}}}}}$ | % | ||
绝对增长量 Absolute increment (Δ) | $\Delta =DB{{H}_{{{t}_{2}}}}-DB{{H}_{{{t}_{1}}}}$ | mm·a-1 | |
$\text{ }\!\!\Delta\!\!\text{ }\!\!~\!\!\text{ }=B{{A}_{{{t}_{2}}}}-B{{A}_{{{t}_{1}}}}$ | m2·a-1 | ||
$\text{ }\!\!\Delta\!\!\text{ }\!\!~\!\!\text{ }=B{{P}_{{{t}_{2}}}}-B{{P}_{{{t}_{1}}}}$ | kg·hm-2·a-1 |
表1 氮和磷添加对树木生长和生产力影响的评估方法
Table 1 Methods for assessing the effects of nitrogen and/or phosphorus addition on plant growth and productivity
衡量方法 Method | 计算公式 Calculation equation | 单位 Unit | 参考文献 Reference |
---|---|---|---|
相对生长速率 Relative growth rate (RGR) | $RGR=\frac{\text{ln}DB{{H}_{{{t}_{2}}}}-\text{ln}DB{{H}_{{{t}_{1}}}}}{{{t}_{2}}-{{t}_{1}}}$ | mm·mm-1·a-1 | |
$RGR=\frac{\text{ln}B{{A}_{{{t}_{2}}}}-\text{ln}B{{A}_{{{t}_{1}}}}}{{{t}_{2}}-{{t}_{1}}}$ | mm2·mm-2·a-1 | ||
$RGR=\frac{\text{ln}B{{P}_{{{t}_{2}}}}-\text{ln}B{{P}_{{{t}_{1}}}}}{{{t}_{2}}-{{t}_{1}}}$ | kg·kg-1·a-1 | ||
$RGR=\frac{B{{A}_{{{t}_{2}}}}-B{{A}_{{{t}_{1}}}}\text{ }\!\!~\!\!\text{ }}{\text{B}{{\text{A}}_{{{t}_{1}}}}}$ | % | ||
绝对增长量 Absolute increment (Δ) | $\Delta =DB{{H}_{{{t}_{2}}}}-DB{{H}_{{{t}_{1}}}}$ | mm·a-1 | |
$\text{ }\!\!\Delta\!\!\text{ }\!\!~\!\!\text{ }=B{{A}_{{{t}_{2}}}}-B{{A}_{{{t}_{1}}}}$ | m2·a-1 | ||
$\text{ }\!\!\Delta\!\!\text{ }\!\!~\!\!\text{ }=B{{P}_{{{t}_{2}}}}-B{{P}_{{{t}_{1}}}}$ | kg·hm-2·a-1 |
胸径等级 Classes for diameter at breast height (cm) | 参考文献 Reference | ||
---|---|---|---|
小树 Small tree | 中树 Medium tree | 大树 Large tree | |
3-10 | 10-20 | >20 | Fisher et al., 2013; Jiang et al., 2018; Zou et al., 2019 |
5-10 | 10-30 | >30 | Alvarez-Clare et al., 2013; Tian et al., 2017 |
5-15 | >15 | Li et al., 2018 | |
10-25 | >25 | Wright et al., 2018 |
表2 基于胸径的树木等级划分
Table 2 Methods for assessing the effects of nitrogen and/or phosphorus addition on plant growth and productivity
胸径等级 Classes for diameter at breast height (cm) | 参考文献 Reference | ||
---|---|---|---|
小树 Small tree | 中树 Medium tree | 大树 Large tree | |
3-10 | 10-20 | >20 | Fisher et al., 2013; Jiang et al., 2018; Zou et al., 2019 |
5-10 | 10-30 | >30 | Alvarez-Clare et al., 2013; Tian et al., 2017 |
5-15 | >15 | Li et al., 2018 | |
10-25 | >25 | Wright et al., 2018 |
图3 氮和磷添加对树木生长及森林生产力影响研究的总结图。 AM, 丛枝菌根; ECM, 外生菌根。
Fig. 3 Summary diagram for studying the effects of nitrogen and/or phosphorus addition on tree growth and productivity in forest ecosystems. AM, arbuscular mycorrhizal; ECM, ectomycorrhizal.
[1] |
Alvarez-Clare S, Mack MC, Brooks M (2013). A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology, 94, 1540-1551.
DOI URL |
[2] |
Andersen KM, Corre MD, Turner BL, Dalling JW (2010). Plant-soil associations in a lower montane tropical forest: physiological acclimation and herbivore-mediated responses to nitrogen addition. Functional Ecology, 24, 1171-1180.
DOI URL |
[3] |
Aragão LEOC, Malhi Y, Metcalfe DB, Silva-Espejo JE, Jiménez E, Navarrete D, Almeida S, Costa ACL, Salinas N, Phillips OL, Anderson LO, Alvarez E, Baker TR, Goncalvez PH, Huamán-Ovalle J, Mamani-Solórzano M, Meir P, Monteagudo A, Patiño S, Peñuela MC, Prieto A, Quesada CA, Rozas-Dávila A, Rudas A, Silva Jr JA, Vásquez R (2009). Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences, 6, 2759-2778.
DOI URL |
[4] |
Averill C, Dietze MC, Bhatnagar JM (2018). Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biology, 24, 4544-4553.
DOI URL PMID |
[5] |
Báez S, Homeier J (2018). Functional traits determine tree growth and ecosystem productivity of a tropical montane forest: insights from a long-term nutrient manipulation experiment. Global Change Biology, 24, 399-409.
DOI URL PMID |
[6] |
Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699.
DOI URL PMID |
[7] |
BassiriRad H, Lussenhop JF, Sehtiya HL, Borden KK (2015). Nitrogen deposition potentially contributes to oak regeneration failure in the Midwestern temperate forests of the USA. Oecologia, 177, 53-63.
DOI URL PMID |
[8] |
Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, Smith MD (2014). Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution, 5, 65-73.
DOI URL |
[9] | Braun S, Schindler C, Rihm B (2017). Growth trends of beech and Norway spruce in Switzerland: the role of nitrogen deposition, ozone, mineral nutrition and climate. Science of the Total Environment, 599-600, 637-646. |
[10] |
Camarero JJ, Carrer M (2017). Bridging long-term wood functioning and nitrogen deposition to better understand changes in tree growth and forest productivity. Tree Physiology, 37, 1-3.
DOI URL PMID |
[11] |
Čapek P, Manzoni S, Kaštovská E, Wild B, Diáková K, Bárta J, Schnecker J, Biasi C, Martikainen PJ, Alves RJE, Guggenberger G, Gentsch N, Hugelius G, Palmtag J, Mikutta R, Shibistova O, Urich T, Schleper C, Richter A, Šantrůčková H (2018). A plant-microbe interaction framework explaining nutrient effects on primary production. Nature Ecology & Evolution, 2, 1588-1596.
DOI URL PMID |
[12] |
Carlson CA, Burkhart HE, Lee Allen H, Fox TR (2008). Absolute and relative changes in tree growth rates and changes to the stand diameter distribution of Pinus taeda as a result of midrotation fertilizer applications. Canadian Journal of Forest Research, 38, 2063-2071.
DOI URL |
[13] |
Chalot M, Brun A (1998). Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews, 22, 21-44.
DOI URL PMID |
[14] |
Chapin III FS, Vitousek PM, van Cleve K (1986). The nature of nutrient limitation in plant communities. The American Naturalist, 127, 48-58.
DOI URL |
[15] |
Chen D, Li J, Lan Z, Hu S, Bai Y (2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669.
DOI URL |
[16] |
Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, von Fischer JC, Elseroad A, Wasson MF (1999). Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 13, 623-645.
DOI URL |
[17] |
Coley PD, Bryant JP, Chapin III FS (1985). Resource availability and plant antiherbivore defense. Science, 230, 895-899.
DOI URL PMID |
[18] |
Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[19] |
Crowley KF, McNeil BE, Lovett GM, Canham CD, Driscoll CT, Rustad LE, Denny E, Hallett RA, Arthur MA, Boggs JL, Goodale CL, Kahl JS, McNulty SG, Ollinger SV, Pardo LH, Schaberg PG, Stoddard JL, Weand MP, Weathers KC (2012). Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States? Ecosystems, 15, 940-957.
DOI URL |
[20] |
Dai Z, Su W, Chen H, Barberán A, Zhao H, Yu M, Yu L, Brookes PC, Schadt CW, Chang SX, Xu J (2018). Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology, 24, 3452-3461.
DOI URL PMID |
[21] |
DeForest JL, Snell RS (2020). Tree growth response to shifting soil nutrient economy depends on mycorrhizal associations. New Phytologist, 225, 2557-2566.
DOI URL PMID |
[22] |
Deng M, Liu L, Jiang L, Liu W, Wang X, Li S, Yang S, Wang B (2018). Ecosystem scale trade-off in nitrogen acquisition pathways. Nature Ecology & Evolution, 2, 1724-1734.
DOI URL PMID |
[23] | Du E, Fang J (2014). Weak growth response to nitrogen deposition in an old-growth boreal forest. Ecosphere, 5, 109. DOI: 10.1890/es14-00109.1. |
[24] |
Du EZ, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu XH, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226.
DOI URL |
[25] |
Dynarski KA, Houlton BZ (2018). Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytologist, 217, 1050-1061.
DOI URL PMID |
[26] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL PMID |
[27] |
Feng JG, Zhu B (2019). A global meta-analysis of soil respiration and its components in response to phosphorus addition. Soil Biology & Biochemistry, 135, 38-47.
DOI URL |
[28] |
Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH (2013). Nutrient limitation in rainforests and cloud forests along a 3000-m elevation gradient in the Peruvian Andes. Oecologia, 172, 889-902.
DOI URL |
[29] |
Fleischer K, Rebel KT, van der Molen MK, Erisman JW, Wassen MJ, van Loon EE, Montagnani L, Gough CM, Herbst M, Janssens IA, Gianelle D, Dolman AJ (2013). The contribution of nitrogen deposition to the photosynthetic capacity of forests. Global Biogeochemical Cycles, 27, 187-199.
DOI URL |
[30] |
Goswami S, Fisk MC, Vadeboncoeur MA, Garrison-Johnston M, Yanai RD, Fahey TJ (2018). Phosphorus limitation of aboveground production in northern hardwood forests. Ecology, 99, 438-449.
DOI URL PMID |
[31] |
Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011). Nutrient co-limitation of primary producer communities. Ecology Letters, 14, 852-862.
DOI URL |
[32] | He NP, Zhang JH, Liu CC, Xu L, Chen Z, Liu Y, Wang RL, Zhao N, Xu ZW, Tian J, Wang Q, Zhu JX, Li Y, Hou JH, Yu GR (2018). Patterns and influencing factors of traits in forest ecosystems: synthesis and perspectives on the synthetic investigation from the north-east transect of eastern China (NETEC). Acta Ecologica Sinica, 38, 6359-6382. |
[ 何念鹏, 张佳慧, 刘聪聪, 徐丽, 陈智, 刘远, 王瑞丽, 赵宁, 徐志伟, 田静, 王情, 朱剑兴, 李颖, 侯继华, 于贵瑞 (2018). 森林生态系统性状的空间格局与影响因素研究进展——基于中国东部样带的整合分析. 生态学报, 38, 6359-6382.] | |
[33] |
Hedin LO (2004). Global organization of terrestrial plant- nutrient interactions. Proceedings of the National Academy of Sciences of the United States of America, 101, 10849-10850.
DOI URL PMID |
[34] | Herbert DA, Fownes JH (1995). Phosphorus limitation of forest leaf-area and net primary production on a highly weathered soil. Biogeochemistry, 29, 223-235. |
[35] | Högberg P, Fan H, Quist M, Binkley D, Tamm CO (2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489-499. |
[36] | Hopmans P, Elms SR (2013). Impact of defoliation by Essigella californica on the growth of mature Pinus radiata and response to N, P and S fertilizer. Forest Ecology and Management, 289, 190-200. |
[37] |
Hou EQ, Luo YQ, Kuang YW, Chen CR, Lu XK, Jiang LF, Luo XZ, Wen DZ (2020). Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 11, 637. DOI: 10.1038/s41467-020-14492-w.
URL PMID |
[38] |
Houlton BZ, Wang YP, Vitousek PM, Field CB (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327-334.
DOI URL PMID |
[39] |
Ibáñez I, Zak DR, Burton AJ, Pregitzer KS (2016). Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage. Ecological Applications, 26, 913-925.
DOI URL PMID |
[40] | Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322. |
[41] | Jiang J, Wang Y, Yang Y, Yu M, Wang C, Yan J (2019) Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type. Plant and Soil, 440, 523-537. |
[42] | Jiang L, Tian D, Ma S, Zhou X, Xu L, Zhu J, Jing X, Zheng C, Shen H, Zhou Z, Li Y, Zhu B, Fang J (2018). The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest. Science of the Total Environment, 618, 1064-1070. |
[43] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL PMID |
[44] |
Li Y, Niu S, Yu G (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biology, 22, 934-943.
DOI URL PMID |
[45] | Li Y, Tian D, Yang H, Niu S (2018). Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Functional Ecology, 32, 95-105. |
[46] | Liu XY, Du EZ, Xu LC, Shen HH, Fang JY, Hu HF (2015). Response of tree growth to nitrogen addition in aLarix gmelinii primitive forest. Chinese Journal of Plant Ecology, 39, 433-441. |
[ 刘修元, 杜恩在, 徐龙超, 沈海花, 方精云, 胡会峰 (2015). 落叶松原始林树木生长对氮添加的响应. 植物生态学报, 39, 433-441.] | |
[47] |
Lu M, Yang Y, Luo Y, Fang C, Zhou X, Chen J, Yang X, Li B (2011a). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189, 1040-1050.
DOI URL PMID |
[48] | Lu M, Zhou X, Luo Y, Yang Y, Fang C, Chen J, Li B (2011b). Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agriculture, Ecosystems & Environment, 140, 234-244. |
[49] |
Lu X, Vitousek PM, Mao Q, Gilliam FS, Luo Y, Zhou G, Zou X, Bai E, Scanlon TM, Hou E, Mo J (2018). Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 115, 5187-5192.
DOI URL PMID |
[50] | Lu XK, Mo JM, Zhang W, Mao QG, Liu RZ, Wang C, Wang SH, Zheng MH, Mori T, Mao JH, Zhang YQ, Wang YF, Huang J (2019). Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview. Journal of Tropical and Subtropical Botany, 27, 500-522. |
[ 鲁显楷, 莫江明, 张炜, 毛庆功, 刘荣臻, 王聪, 王森浩, 郑棉海, Mori T, 毛晋花, 张勇群, 王玉芳, 黄娟 (2019). 模拟大气氮沉降对中国森林生态系统影响的研究进展. 热带亚热带植物学报, 27, 500-522.] | |
[51] |
Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54, 731-739.
DOI URL |
[52] |
Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 848-850.
DOI URL PMID |
[53] | Mainwaring DB, Maguire DA, Perakis SS (2014). Three-year growth response of young Douglas-fir to nitrogen, calcium, phosphorus, and blended fertilizers in Oregon and Washington. Forest Ecology and Management, 327, 178-188. |
[54] | Mao HR, Jin GZ (2017). Impacts of nitrogen addition on net primary productivity in the typical mixed broadleaved-Korean pine forest. Journal of Beijing Forestry University, 39(8), 42-49. |
[ 毛宏蕊, 金光泽 (2017). 氮添加对典型阔叶红松林净初级生产力的影响. 北京林业大学学报, 39(8), 42-49.] | |
[55] | Markewitz D, Figueiredo RdO, de Carvalho CJR, Davidson EA (2012). Soil and tree response to P fertilization in a secondary tropical forest supported by an Oxisol. Biology and Fertility of Soils, 48, 665-678. |
[56] |
Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
DOI URL PMID |
[57] | McGrath JF, Copeland B, Dumbrell IC (2003). Magnitude and duration of growth and wood quality responses to phosphorus and nitrogen in thinned Pinus radiata in southern Western Australia. Australian Forestry, 66, 223-230. |
[58] |
Nasto MK, Alvarez-Clare S, Lekberg Y, Sullivan BW, Townsend AR, Cleveland CC (2014). Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecology Letters, 17, 1282-1289.
URL PMID |
[59] |
Nasto MK, Winter K, Turner BL, Cleveland CC (2019). Nutrient acquisition strategies augment growth in tropical N2-fixing trees in nutrient-poor soil and under elevated CO2. Ecology, 100, e02646. DOI: 10.1002/ecy.2646.
DOI URL PMID |
[60] | Noguchi K, Nagakura J, Konôpka B, Sakata T, Kaneko S, Takahashi M (2013). Fine-root dynamics in sugi (Cryptomeria japonica) under manipulated soil nitrogen conditions. Plant and Soil, 364, 159-169. |
[61] |
Norby RJ, de Kauwe MG, Domingues TF, Duursma RA, Ellsworth DS, Goll DS, Lapola DM, Luus KA, MacKenzie AR, Medlyn BE, Pavlick R, Rammig A, Smith B, Thomas R, Thonicke K, Walker AP, Yang X, Zaehle S (2016). Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist, 209, 17-28.
DOI URL PMID |
[62] |
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the worldʼs forests. Science, 333, 988-993.
DOI URL PMID |
[63] | Peng YF, Guo DL, Yang YH (2017). Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 26, 102-114. |
[64] |
Peng YF, Yang YH (2016). Allometric biomass partitioning under nitrogen enrichment: evidence from manipulative experiments around the world. Scientific Reports, 6, 28918. DOI: 10.1038/srep28918.
DOI URL PMID |
[65] |
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. DOI: 10.1038/ncomms3934.
DOI URL PMID |
[66] | Rappe-George MO, Gärdenäs AI, Kleja DB (2013). The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil. Biogeosciences, 10, 1365-1377. |
[67] | Reich PB, Hungate BA, Luo Y (2006). Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics, 37, 611-636. |
[68] |
Rosling A, Midgley MG, Cheeke T, Urbina H, Fransson P, Phillips RP (2016). Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist, 209, 1184-1195.
DOI URL PMID |
[69] | Saarsalmi A, Smolander A, Kukkola M, Moilanen M, Saramäki J (2012). 30-year effects of wood ash and nitrogen fertilization on soil chemical properties, soil microbial processes and stand growth in a Scots pine stand. Forest Ecology and Management, 278, 63-70. |
[70] | Schulte-Uebbing L, de Vries W (2018). Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Global Change Biology, 24, 416-431. |
[71] | Talbot JM, Allison SD, Treseder KK (2008). Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22, 955-963. |
[72] |
Taylor BN, Menge DNL (2018). Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nature Plants, 4, 655-661.
DOI URL PMID |
[73] | Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13-17. |
[74] | Tian D, Li P, Fang W, Xu J, Luo Y, Yan Z, Zhu B, Wang J, Xu X, Fang J (2017). Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China. Biogeosciences, 14, 3461-3469. |
[75] | Tian D, Niu S (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019. |
[76] | Tian D, Wang H, Sun J, Niu S (2016). Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environmental Research Letters, 11, 024012. DOI: 10.1088/1748-9326/11/2/024012. |
[77] | Vadeboncoeur MA (2010). Meta-analysis of fertilization experiments indicates multiple limiting nutrients in northeastern deciduous forests. Canadian Journal of Forest Research, 40, 1766-1780. |
[78] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[79] |
Vitousek PM (1984). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285-298.
DOI URL |
[80] | Vitousek PM, Farrington H (1997). Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry, 37, 63-75. |
[81] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
DOI URL PMID |
[82] | Vitousek PM, Walker LR, Whiteaker LD, Matson PA (1993). Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeochemistry, 23, 197-215. |
[83] | Walker TW, Syers JK (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 1-19. |
[84] |
Waring BG, Pérez-Aviles D, Murray JG, Powers JS (2019). Plant community responses to stand-level nutrient fertilization in a secondary tropical dry forest. Ecology, 100, e02691. DOI: 10.1002/ecy.2691.
DOI URL PMID |
[85] | Wieder WR, Cleveland CC, Kolby Smith W, Todd-Brown K (2015). Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8, 441-444. |
[86] |
Wooliver RC, Marion ZH, Peterson CR, Potts BM, Senior JK, Bailey JK, Schweitzer JA (2017). Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment. Ecology, 98, 2120-2132.
DOI URL PMID |
[87] | Wright SJ (2019). Plant responses to nutrient addition experiments conducted in tropical forests. Ecological Monographs, 89, e01382. DOI: 10.1002/ecm.1382. |
[88] |
Wright SJ, Turner BL, Yavitt JB, Harms KE, Kaspari M, Tanner EVJ, Bujan J, Griffin EA, Mayor JR, Pasquini SC, Sheldrake M, Garcia MN (2018). Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology, 99, 1129-1138.
DOI URL PMID |
[89] | Xu XF, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22, 737-749. |
[90] |
Yuan ZY, Chen HYH (2012). A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proceedings of the Royal Society B, 279, 3796-3802.
DOI URL PMID |
[91] |
Yue K, Fornara DA, Yang W, Peng Y, Peng C, Liu Z, Wu F (2017). Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecology Letters, 20, 663-672.
DOI URL PMID |
[92] | Zhao Q, Zeng DH (2019). Nitrogen addition effects on tree growth and soil properties mediated by soil phosphorus availability and tree species identity. Forest Ecology and Management, 449, 117478. DOI: 10.1016/j.foreco.2019.117478. |
[93] |
Zheng M, Zhou Z, Luo Y, Zhao P, Mo J (2019). Global pattern and controls of biological nitrogen fixation under nutrient enrichment: a meta-analysis. Global Change Biology, 25, 3018-3030.
DOI URL PMID |
[94] | Zhou XL, Cai Q, Xiong XY, Fang WJ, Zhu JX, Zhu JL, Fang JY, Ji CJ (2018). Ecosystem carbon stock and within-system distribution in successionalFagus lucida forests in Mt. Yueliang, Guizhou, China. Chinese Journal of Plant Ecology, 42, 703-712. |
[ 周序力, 蔡琼, 熊心雨, 方文静, 朱剑霄, 朱江玲, 方精云, 吉成均 (2018). 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局. 植物生态学报, 42, 703-712.] | |
[95] | Zhu F, Lu X, Mo J (2014). Phosphorus limitation on photosynthesis of two dominant understory species in a lowland tropical forest. Journal of Plant Ecology, 7, 526-534. |
[96] | Zou AL, Li XP, Ni XF, Ji CJ (2019). Responses of tree growth to nitrogen addition inQuercus wutaishanica forests in Mt. Dongling, Beijing, China. Chinese Journal of Plant Ecology, 43, 783-792. |
[ 邹安龙, 李修平, 倪晓凤, 吉成均 (2019). 模拟氮沉降对北京东灵山辽东栎林树木生长的影响. 植物生态学报, 43, 783-792.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[6] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[7] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[8] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[9] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[10] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[11] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[12] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[13] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[14] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[15] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19