植物生态学报 ›› 2007, Vol. 31 ›› Issue (5): 814-824.DOI: 10.17521/cjpe.2007.0103
胡志伟1, 沈泽昊1,*(), 吕楠1, 赵俊1, 李道兴2, 陈华3, 王功芳2
收稿日期:
2006-05-25
接受日期:
2006-12-08
出版日期:
2007-05-25
发布日期:
2007-09-30
通讯作者:
沈泽昊
作者简介:
* E-mail: shzh@urban.pku.edu.cn基金资助:
HU Zhi-Wei1, SHEN Ze-Hao1,*(), LÜ Nan1, ZHAO Jun1, LI Dao-Xing2, CHEN Hua3, WANG Gong-Fang2
Received:
2006-05-25
Accepted:
2006-12-08
Online:
2007-05-25
Published:
2007-09-30
Contact:
SHEN Ze-Hao
摘要:
地形已被广泛认为是植被环境时空异质性的重要来源,但其对山地森林群落动态的影响及其机理仍不清楚。作者在三峡大老岭选取一块200 m×100 m的常绿落叶阔叶林样地,在样地植物群落调查的同时,建立了1∶500的数字高程模型,并利用树木年轮数据和分种的胸径-年龄幂函数模型,推算了全部10 m×10 m单元样方的群落年龄。统计了样地群落的年龄结构及其代表种的构成特征,并利用多元回归结合方差分析方法分析了地形和生物因子对群落年龄结构的影响与途径。结果表明:1)幂函数模型很好地拟合了16个树种的胸径-年龄数量关系;2)样地内群落斑块的年龄介于14~179年,平均值在95年左右;3)代表样方群落年龄的树种共有24个,而前5种即在68.5%的样方中决定群落的年龄;4)回归分析表明群落年龄受到溪流影响指数、坡位、坡度、样方内受干扰木胸面积和树种生长指数等因素的显著影响。显示沟谷地表径流冲击和表土侵蚀等坡面过程带来的干扰明显影响群落发育过程的空间格局,具有不同生态习性树种的潜在年龄也限制了群落的现实年龄;5)地形主要通过控制地表干扰体系的时空分布和不同物种的选择性分布两方面而对群落动态与年龄产生影响。但由于生态格局自身的复杂性与随机性和分析方法带来的误差,使基于地形的群落年龄格局预测结果还存在较大的不确定性。
胡志伟, 沈泽昊, 吕楠, 赵俊, 李道兴, 陈华, 王功芳. 地形对森林群落年龄及其空间格局的影响. 植物生态学报, 2007, 31(5): 814-824. DOI: 10.17521/cjpe.2007.0103
HU Zhi-Wei, SHEN Ze-Hao, LÜ Nan, ZHAO Jun, LI Dao-Xing, CHEN Hua, WANG Gong-Fang. IMPACTS OF TOPOGRAPHY ON THE SPATIAL PATTERN OF THE AGE OF FOREST COMMUNITY. Chinese Journal of Plant Ecology, 2007, 31(5): 814-824. DOI: 10.17521/cjpe.2007.0103
因子 Factor | 定义 Definition | 值域 Value range | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔 Elevation (elev) | 利用等高线图插值 Interpolation from contour | 1 652~1 745 m | |||||||||||||||||||||
坡度 Slope angle (slop) | 根据ArcGIS9.0中Spatial analysis模块的定义 | 5°~ 49° | |||||||||||||||||||||
水平曲率 Plan curvature (plan) | According to the algorithms in the spatial analysis module of ArcGIS9.0 | -14.43~18.05 | |||||||||||||||||||||
垂直曲率 Profile curvature (prof) | -12.02~12.17 | ||||||||||||||||||||||
坡向 Slope aspect (aspe) | 根据ArcGIS9.0和Parker ( | 0°~ 180° | |||||||||||||||||||||
坡位 Slope position (posi) | 0~100 | ||||||||||||||||||||||
溪流影响 Stream impact (si) | si=2: 有溪流经过 Passed by stream; si=1: 相邻8个栅格中至少1个有溪流经过 With at least one of 8 neighbors passed by stream; si=0: 其它 Others | 0, 1, 2 |
表1 样方地形指标定义
Table 1 Definitions of topographic indices of the plots
因子 Factor | 定义 Definition | 值域 Value range | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔 Elevation (elev) | 利用等高线图插值 Interpolation from contour | 1 652~1 745 m | |||||||||||||||||||||
坡度 Slope angle (slop) | 根据ArcGIS9.0中Spatial analysis模块的定义 | 5°~ 49° | |||||||||||||||||||||
水平曲率 Plan curvature (plan) | According to the algorithms in the spatial analysis module of ArcGIS9.0 | -14.43~18.05 | |||||||||||||||||||||
垂直曲率 Profile curvature (prof) | -12.02~12.17 | ||||||||||||||||||||||
坡向 Slope aspect (aspe) | 根据ArcGIS9.0和Parker ( | 0°~ 180° | |||||||||||||||||||||
坡位 Slope position (posi) | 0~100 | ||||||||||||||||||||||
溪流影响 Stream impact (si) | si=2: 有溪流经过 Passed by stream; si=1: 相邻8个栅格中至少1个有溪流经过 With at least one of 8 neighbors passed by stream; si=0: 其它 Others | 0, 1, 2 |
种名 Species name | 参数估计 Parameter estimation | t 检验 t-test | n-2 | 模型回归分析的F检验 F test for ANOVA of models | |||
---|---|---|---|---|---|---|---|
t | Sig. | F | Sig. | ||||
包石栎Lithocarpus cleistocarpus | α | 0.502 | 4.430 | 0.000 | 35 | 209.922 | 0.000 |
β | 0.918 | 14.489 | 0.000 | ||||
短柱柃 Eurya loquaiana | α | 0.602 | 3.504 | 0.004 | 19 | 86.229 | 0.000 |
β | 0.711 | 9.286 | 0.000 | ||||
灯台树Cornus controversa | α | 1.241 | 4.872 | 0.001 | 25 | 164.531 | 0.000 |
β | 0.764 | 15.418 | 0.000 | ||||
华中樱桃 Cerasus conradinae | α | 0.421 | 3.673 | 0.001 | 28 | 154.916 | 0.000 |
β | 1.017 | 11.712 | 0.000 | ||||
雷公鹅耳枥Carpinus fargesii | α | 0.436 | 6.466 | 0.000 | 32 | 487.684 | 0.000 |
β | 0.956 | 22.084 | 0.000 | ||||
亮叶桦 Betula luminifera | α | 1.004 | 4.681 | 0.010 | 20 | 73.860 | 0.000 |
β | 0.814 | 14.617 | 0.000 | ||||
亮叶水青冈 Fagus lucida | α | 0.533 | 3.769 | 0.001 | 29 | 151.011 | 0.000 |
β | 0.888 | 12.289 | 0.000 | ||||
米心水青冈 Fagus engleriana | α | 0.681 | 3.946 | 0.001 | 29 | 146.283 | 0.000 |
β | 0.818 | 12.095 | 0.000 | ||||
青栲 Cyclobalanopsis myrsinaefolia | α | 0.401 | 3.224 | 0.004 | 21 | 136.048 | 0.000 |
β | 0.976 | 11.664 | 0.000 | ||||
四照花Dendrobenthamia japonica var. chinensis | α | 0.564 | 3.787 | 0.001 | 27 | 128.606 | 0.000 |
β | 0.865 | 11.340 | 0.000 | ||||
锐齿槲栎 Quercus aliena var. acuteserrata | α | 0.523 | 4.593 | 0.000 | 44 | 220.279 | 0.000 |
β | 0.921 | 14.842 | 0.000 |
表2 样地群落主要树种胸径-年龄关系的幂函数模型
Table 2 The power models of age-diameter relationship for main tree species
种名 Species name | 参数估计 Parameter estimation | t 检验 t-test | n-2 | 模型回归分析的F检验 F test for ANOVA of models | |||
---|---|---|---|---|---|---|---|
t | Sig. | F | Sig. | ||||
包石栎Lithocarpus cleistocarpus | α | 0.502 | 4.430 | 0.000 | 35 | 209.922 | 0.000 |
β | 0.918 | 14.489 | 0.000 | ||||
短柱柃 Eurya loquaiana | α | 0.602 | 3.504 | 0.004 | 19 | 86.229 | 0.000 |
β | 0.711 | 9.286 | 0.000 | ||||
灯台树Cornus controversa | α | 1.241 | 4.872 | 0.001 | 25 | 164.531 | 0.000 |
β | 0.764 | 15.418 | 0.000 | ||||
华中樱桃 Cerasus conradinae | α | 0.421 | 3.673 | 0.001 | 28 | 154.916 | 0.000 |
β | 1.017 | 11.712 | 0.000 | ||||
雷公鹅耳枥Carpinus fargesii | α | 0.436 | 6.466 | 0.000 | 32 | 487.684 | 0.000 |
β | 0.956 | 22.084 | 0.000 | ||||
亮叶桦 Betula luminifera | α | 1.004 | 4.681 | 0.010 | 20 | 73.860 | 0.000 |
β | 0.814 | 14.617 | 0.000 | ||||
亮叶水青冈 Fagus lucida | α | 0.533 | 3.769 | 0.001 | 29 | 151.011 | 0.000 |
β | 0.888 | 12.289 | 0.000 | ||||
米心水青冈 Fagus engleriana | α | 0.681 | 3.946 | 0.001 | 29 | 146.283 | 0.000 |
β | 0.818 | 12.095 | 0.000 | ||||
青栲 Cyclobalanopsis myrsinaefolia | α | 0.401 | 3.224 | 0.004 | 21 | 136.048 | 0.000 |
β | 0.976 | 11.664 | 0.000 | ||||
四照花Dendrobenthamia japonica var. chinensis | α | 0.564 | 3.787 | 0.001 | 27 | 128.606 | 0.000 |
β | 0.865 | 11.340 | 0.000 | ||||
锐齿槲栎 Quercus aliena var. acuteserrata | α | 0.523 | 4.593 | 0.000 | 44 | 220.279 | 0.000 |
β | 0.921 | 14.842 | 0.000 |
种名 Specie name | 频率 Frequency | 年龄范围 Age rang | 平均值±标准偏差 Mean±SD |
---|---|---|---|
米心水青冈 Fagus engleriana | 33 | 14~169 | 106.2±43.7 |
茅栗 Castanea seguinii | 33 | 43~163 | 104.4±23.1 |
锥栗 Castanea henryi | 30 | 72~145 | 95.0±16.2 |
锐齿槲栎 Quercus aliena var. acuteserrata | 21 | 88~179 | 117.0±26.4 |
三桠乌药 Lindera obtusiloba | 20 | 15~144 | 88.8±24.9 |
大叶杨 Populus lasiocarpa | 9 | 50~78 | 61.4±9.9 |
包石栎 Lithocarpus cleistocarpus | 9 | 30~66 | 53.2±10.0 |
亮叶桦 Betula luminifera | 6 | 70~134 | 98.4±28.0 |
石灰花楸 Sorbus folgneri | 5 | 80~173 | 114.5±36.3 |
雷公鹅耳枥 Carpinus fargesii | 5 | 27~78 | 60.3±20.6 |
青栲 Cyclobalanopsis myrsinaefolia | 5 | 12~72 | 50.5±24.3 |
亮叶水青冈 Fagus lucida | 3 | 91~122 | 111.5±11.7 |
灯台树 Cornus controversa | 3 | 53~119 | 95.5±36.6 |
漆树 Toxicodendron vernicifluum | 3 | 20~77 | 40.1±32.2 |
其它(10种) Others (10 species) | 1或(or)2 | 24~169 |
表3 样地诸样方最大年龄树种统计
Table 3 Species demography of the oldest trees in the grids of the plot
种名 Specie name | 频率 Frequency | 年龄范围 Age rang | 平均值±标准偏差 Mean±SD |
---|---|---|---|
米心水青冈 Fagus engleriana | 33 | 14~169 | 106.2±43.7 |
茅栗 Castanea seguinii | 33 | 43~163 | 104.4±23.1 |
锥栗 Castanea henryi | 30 | 72~145 | 95.0±16.2 |
锐齿槲栎 Quercus aliena var. acuteserrata | 21 | 88~179 | 117.0±26.4 |
三桠乌药 Lindera obtusiloba | 20 | 15~144 | 88.8±24.9 |
大叶杨 Populus lasiocarpa | 9 | 50~78 | 61.4±9.9 |
包石栎 Lithocarpus cleistocarpus | 9 | 30~66 | 53.2±10.0 |
亮叶桦 Betula luminifera | 6 | 70~134 | 98.4±28.0 |
石灰花楸 Sorbus folgneri | 5 | 80~173 | 114.5±36.3 |
雷公鹅耳枥 Carpinus fargesii | 5 | 27~78 | 60.3±20.6 |
青栲 Cyclobalanopsis myrsinaefolia | 5 | 12~72 | 50.5±24.3 |
亮叶水青冈 Fagus lucida | 3 | 91~122 | 111.5±11.7 |
灯台树 Cornus controversa | 3 | 53~119 | 95.5±36.6 |
漆树 Toxicodendron vernicifluum | 3 | 20~77 | 40.1±32.2 |
其它(10种) Others (10 species) | 1或(or)2 | 24~169 |
参数 Coefficient | 估计 Estimation | 标准误 SE | t | p | ||||
---|---|---|---|---|---|---|---|---|
M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | |
截距Intercept | 260.7 | 409.2 | 265.7 | 571.3 | 0.981 | 0.716 | 0.328 | 0.475 |
si | -126.5 | -12.88 | 4.719 | 4.938 | - 2.681 | - 2.609 | 0.008** | 0.0099** |
posi | 0.188 | 0.193 | 0.078 | 0.791 | 2.409 | 2.434 | 0.017* | 0.016* |
slop | 0.531 | 0.451 | 0.249 | 0.293 | 2.130 | 1.540 | 0.035* | 0.125 |
dba | -0.000 4 | -0.000 4 | 0.000 2 | 0.000 2 | -2.011 | -1.996 | 0.046* | 0.047* |
gri | 1.073 | 1.162 | 0.567 | 0.598 | 1.891 | 1.943 | 0.060* | 0.054* |
gar | -0.110 | -0.112 | 0.083 | 0.084 | -1.319 | -1.338 | 0.189 | 0.182 |
aspe | 0.861 | 0.087 | 0.083 | 0.090 | 1.041 | 0.961 | 0.299 | 0.338 |
prof | 134.2 | 148.2 | 531.9 | 535.2 | 0.252 | 0.277 | 0.801 | 0.782 |
plan | -129.9 | -143.6 | 531.3 | 534.6 | -0.244 | -0.269 | 0.807 | 0.789 |
elev | 0.265 | 0.336 | 0.790 | 0.430 | ||||
Y | 0.061 | 0.112 | 0.543 | 0.588 | ||||
X | -0.023 | 0.098 | -0.234 | 0.815 |
表4 两种多元回归模型的参数分析和t检验
Table 4 Coefficients analysis and t-test of two multiple regression models
参数 Coefficient | 估计 Estimation | 标准误 SE | t | p | ||||
---|---|---|---|---|---|---|---|---|
M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | |
截距Intercept | 260.7 | 409.2 | 265.7 | 571.3 | 0.981 | 0.716 | 0.328 | 0.475 |
si | -126.5 | -12.88 | 4.719 | 4.938 | - 2.681 | - 2.609 | 0.008** | 0.0099** |
posi | 0.188 | 0.193 | 0.078 | 0.791 | 2.409 | 2.434 | 0.017* | 0.016* |
slop | 0.531 | 0.451 | 0.249 | 0.293 | 2.130 | 1.540 | 0.035* | 0.125 |
dba | -0.000 4 | -0.000 4 | 0.000 2 | 0.000 2 | -2.011 | -1.996 | 0.046* | 0.047* |
gri | 1.073 | 1.162 | 0.567 | 0.598 | 1.891 | 1.943 | 0.060* | 0.054* |
gar | -0.110 | -0.112 | 0.083 | 0.084 | -1.319 | -1.338 | 0.189 | 0.182 |
aspe | 0.861 | 0.087 | 0.083 | 0.090 | 1.041 | 0.961 | 0.299 | 0.338 |
prof | 134.2 | 148.2 | 531.9 | 535.2 | 0.252 | 0.277 | 0.801 | 0.782 |
plan | -129.9 | -143.6 | 531.3 | 534.6 | -0.244 | -0.269 | 0.807 | 0.789 |
elev | 0.265 | 0.336 | 0.790 | 0.430 | ||||
Y | 0.061 | 0.112 | 0.543 | 0.588 | ||||
X | -0.023 | 0.098 | -0.234 | 0.815 |
模型Model | 残差Residual SE | 自由度df | 变量数No. of variables | R2 | F | p |
---|---|---|---|---|---|---|
1 | 32.07 | 181 | 10 | 0.160 8 | 3.136 | 0.000 57 |
2 | 32.22 | 178 | 13 | 0.162 2 | 2.651 | 0.002 05 |
表5 两个模型的方差分析和F检验
Table 5 ANOVA and F test on two regression models
模型Model | 残差Residual SE | 自由度df | 变量数No. of variables | R2 | F | p |
---|---|---|---|---|---|---|
1 | 32.07 | 181 | 10 | 0.160 8 | 3.136 | 0.000 57 |
2 | 32.22 | 178 | 13 | 0.162 2 | 2.651 | 0.002 05 |
dba | gar | aspe | slop | posi | plan | prof | si | p |
---|---|---|---|---|---|---|---|---|
X | 0.030 | 0.193** | 0.372*** | -0.362*** | 0.162* | 0.024 | -0.054 | -0.191** |
Y | -0.005 | 0.024 | -0.006 | 0.265*** | -0.01 | -0.052 | 0.008 | 0.063 |
elev | -0.036 | 0.100 | 0.030 | -0.101 | 0.372*** | 0.151* | -0.202*** | -0.437*** |
gri | 0.058 | 0.035 | -0.093 | 0.120 | -0.025 | -0.041 | 0.061 | 0.090 |
dba | 0.115 | 0.135* | -0.063 | 0.040 | 0.045 | 0.018 | -0.033 | |
gar | 0.094 | -0.126* | -0.089 | -0.144* | 0.107 | 0.120* | ||
aspe | -0.464*** | -0.18* | -0.104 | 0.004 | 0.177* | |||
slop | 0.145* | 0.09 | 0.081 | -0.027 | ||||
posi | 0.619*** | -0.565*** | -0.644*** | |||||
plan | -0.616*** | -0.456*** | ||||||
prof | 0.418*** |
表6 样方地形变量与其它生境因子之间的相关系数矩阵
Table 6 The matrix of partial correlation coefficients between grid age and the interpretive variables after controlling the spatial factors (X, Y, elev)
dba | gar | aspe | slop | posi | plan | prof | si | p |
---|---|---|---|---|---|---|---|---|
X | 0.030 | 0.193** | 0.372*** | -0.362*** | 0.162* | 0.024 | -0.054 | -0.191** |
Y | -0.005 | 0.024 | -0.006 | 0.265*** | -0.01 | -0.052 | 0.008 | 0.063 |
elev | -0.036 | 0.100 | 0.030 | -0.101 | 0.372*** | 0.151* | -0.202*** | -0.437*** |
gri | 0.058 | 0.035 | -0.093 | 0.120 | -0.025 | -0.041 | 0.061 | 0.090 |
dba | 0.115 | 0.135* | -0.063 | 0.040 | 0.045 | 0.018 | -0.033 | |
gar | 0.094 | -0.126* | -0.089 | -0.144* | 0.107 | 0.120* | ||
aspe | -0.464*** | -0.18* | -0.104 | 0.004 | 0.177* | |||
slop | 0.145* | 0.09 | 0.081 | -0.027 | ||||
posi | 0.619*** | -0.565*** | -0.644*** | |||||
plan | -0.616*** | -0.456*** | ||||||
prof | 0.418*** |
参数 Coefficients | 估计 Estimation | 标准误 SE | t | p |
---|---|---|---|---|
截距Intercept | 172.2 | 302.6 | 0.569 | 0.570 |
gri | -5.251 | 0.646 | -8.129 | 6.77e-14*** |
slop | 0.699 | 0.284 | 2.462 | 0.015* |
posi | 0.207 | 0.089 | 2.332 | 0.021* |
si | -10.400 | 5.373 | -1.935 | 0.055 |
dba | -0.000 35 | 0.000 2 | -1.753 | 0.081 |
表7 胸径-因子回归模型的参数分析和t检验
Table 7 Coefficients analysis and t-test of DBH-habitat factor regression model
参数 Coefficients | 估计 Estimation | 标准误 SE | t | p |
---|---|---|---|---|
截距Intercept | 172.2 | 302.6 | 0.569 | 0.570 |
gri | -5.251 | 0.646 | -8.129 | 6.77e-14*** |
slop | 0.699 | 0.284 | 2.462 | 0.015* |
posi | 0.207 | 0.089 | 2.332 | 0.021* |
si | -10.400 | 5.373 | -1.935 | 0.055 |
dba | -0.000 35 | 0.000 2 | -1.753 | 0.081 |
[1] | Austin MP, Cunningham RB, Fleming PM (1984). New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio, 55,11-27. |
[2] | Borcard D, Legendre P, Drapeau P (1992). Partialling out the spatial component of ecological variation. Ecology, 73,1045-1055. |
[3] | Bormann FH, Likens GE (1979). Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York, 23. |
[4] | Carmel Y, Kadmon R (1999). Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem in Israel. Plant Ecology, 145,243-254. |
[5] | Chen Z, Hsieh C, Jiang F, Hsieh T, Sun I (1997). Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecology, 132,229-241. |
[6] | Dirnbøck T, Hobbs RJ, Lambeck RJ, Caccetta PA (2002). Vegetation distribution in relation to topographically driven processes in southwestern Australia. Applied Vegetation Science, 5,147-158. |
[7] | Formann RTT (1995). Land Mosaics: the Ecology of Landscapes and Regions. Cambridge University Press, Cambridge, 69. |
[8] | Franklin J (1995). Predictive vegetation mapping: geographical modeling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19,474-499. |
[9] | Gratzer G, Canham C, Dieckmann U, Fischer A, Iwasa Y, Law R, Lexer MJ, Sandmann H, Spies TA, Splechtna BE, Szwagrzyk J (2004). Spatio-temporal development of forests--current trends in field methods and models. Oikos, 107,3-15. |
[10] | Guisan A, Zimmermann NE (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135,147-186. |
[11] | Hara M, Hirata K, Oono K (1996). Relationship between micro-landform and vegetation structure in an evergreen broad-leaved forest on Okinawa Island, S-W. Japan. Natural History Research, 4,27-35. |
[12] | Hubbell SP (2005). Neutral theory in community ecological and hypothesis of functional equivalence. Functional Ecology, 19,166-172. |
[13] | Keeton WS, Franklin JF (2004). Fire-related landform associations of remnant old-growth trees in the southern Washington Cascade Range. Canadian Journal of Forest Research, 34,2371-2381. |
[14] | Kobo RK, Pacala SW, Silander JA, Canham CD (1995). Juvenile tree survivorship as a component of shade tolerance. Ecological Applications, 5,517-532. |
[15] | Mladenoff DJ, Baker WL (1999). Development of forest and landscape modeling approaches. In: Mladenoff DJ, Baker WLeds. Spatial Modeling of Forest Landscape Change: Approaches and Applications. Cambridge University Press,Cambridge, UK,1-13. |
[16] | Parker AJ (1982). The topographic relative moisture index: an approach to soil moisture assessment in mountain terrain. Physical Geography, 3,160-168. |
[17] | Pickett STA, White PS (1985). The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York, 153. |
[18] | Qiu Y (邱扬), Fu BJ (傅伯杰), Wang J (王军), Chen LD (陈利顶) (2004). Spatiotemporal variability of the soil erosion and its relations to the influencing factors on the Loess Plateau, China. Acta Ecologica Sinica (生态学报), 24,1871-1877. (in Chinese with English abstract) |
[19] | Resler LM (2006). Geomorphic controls of spatial pattern and process at alpine treeline. The Professional Geographer, 58,124-138. |
[20] | Shen ZH (沈泽昊), Jin YX (金义兴), Zhao ZE (赵子恩), Wu JQ (吴金清), Huang HD (黄汉东) (2000a). A study on the classification of forest communities of Dalaoling region at the Three Gorges. Wuhan Journal of Botany (武汉植物学研究), 18,99-107. (in Chinese with English abstract) |
[21] | Shen ZH (沈泽昊), Zhang XS (张新时), Jin YX (金义兴) (2000b). The spatial pattern and topographic interpretation of the forest vegetation at Dalaoling region in the Three Gorges. Acta Botanica Sinica (植物学报), 42,1089-1095. (in Chinese with English abstract) |
[22] | Shen ZH (沈泽昊), Zhang XS (张新时), Jin YX (金义兴) (2000c). An analysis of the topographic patterns of the chief woody species at Dalaoling Mountain in the Three Gorges region. Acta Phytoecologica Sinica (植物生态学报), 24,581-587. (in Chinese with English abstract) |
[23] | Shen ZH (沈泽昊), Lü N (吕楠), Zhao J (赵俊), Li DX (李道兴), Wang GF (王功芳) (2004). The topographic pattern of seed rain of a mountain mixed evergreen and deciduous forest community. Acta Ecologica Sinica (生态学报), 24,1981-1987. (in Chinese with English abstract) |
[24] | Shen ZH (沈泽昊), Zhao J (赵俊) (2007). Prediction of the spatial patterns of species richness based on the plant-topography relationship: an application of GAMs approach. Acta Ecologica Sinica (生态学报), 27,953-963. (in Chinese with English abstract) |
[25] | Swanson FJ, Kratz TK, Caine N, Woodmansee RG (1988). Landform effects on ecosystem patterns and processes. BioScience, 38,92-98. |
[26] | Taylor AH, Skinner CN (2003). Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecological Applications, 13,704-719. |
[27] | Turner MG (1989). Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics, 20,171-197. |
[28] | Urban DL, Goslee S, Pierce KB, Lookingbill TR (2002). Extending community ecology to landscapes. Ecoscience, 9,200-212. |
[29] | Wang GH (王国宏), Yang LM (杨利民) (2001). Gradient analysis and environmental interpretation of woody plant communities in the middle section of the northern slopes of Qilian Mountain, Gansu, China. Acta Phytoecologica Sinica (植物生态学报), 25,733-740. (in Chinese with English abstract) |
[30] | Watt AS (1947). Pattern and process in the plant community. Journal of Ecology, 35,1-22. |
[31] | Whittaker RH (1956). Vegetation of the Great Smoky Mountains. Ecological Monographs, 26,1-80. |
[32] | Wu J, Levin SA (1994). A spatial patch dynamic modeling approach to pattern and process in an annual grassland. Ecological Monographs, 64,447-464. |
[33] | Yanagisawa N, Fujita N (1999). Different distribution patterns of woody species on a slope in relation to vertical root distribution and dynamics of soil moisture profile. Ecological Research, 14,165-177. |
[34] | Zhang QF (张全发), Zheng Z (郑重), Jin YX (金义兴) (1990). Studies on the forest succession in Dalao Ridge, Hubei Province. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学报), 14,110-119. (in Chinese with English abstract) |
[35] | Zou BJ (邹豹君) (1985). Principles of Local Geomorphology (小地貌学原理).The Commercial Publisher, Beijing, 219. (in Chinese) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[3] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[4] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[5] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[6] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[7] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[8] | 秦倩倩, 邱聪, 郑大柽, 刘艳红. 油松人工林火烧迹地早期土壤入渗动态[J]. 植物生态学报, 2021, 45(8): 903-917. |
[9] | 李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486. |
[10] | 叶学华, 薛建国, 谢秀芳, 黄振英. 外部干扰对根茎型克隆植物甘草自然种群植株生长及主要药用成分含量的影响[J]. 植物生态学报, 2020, 44(9): 951-961. |
[11] | 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304. |
[12] | 李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣. 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类[J]. 植物生态学报, 2020, 44(3): 236-247. |
[13] | 王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣. 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响[J]. 植物生态学报, 2020, 44(10): 1015-1027. |
[14] | 王进, 朱江, 艾训儒, 姚兰, 黄小, 吴漫玲, 朱强, 洪建峰. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5): 447-457. |
[15] | 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19