植物生态学报 ›› 2005, Vol. 29 ›› Issue (6): 878-883.DOI: 10.17521/cjpe.2005.0116
魏小平1, 赵长明1, 王根轩2,1,*(), 陈宝明1, 程栋梁1
收稿日期:
2005-02-02
接受日期:
2005-05-27
出版日期:
2005-02-02
发布日期:
2005-09-30
通讯作者:
王根轩
作者简介:
*E-mail:wanggx@zju.edu.cn
WEI Xiao-Ping1, ZHAO Chang-Ming1, WANG Gen-Xuan2,1,*(), CHEN Bao-Ming1, CHENG Dong-Liang1
Received:
2005-02-02
Accepted:
2005-05-27
Online:
2005-02-02
Published:
2005-09-30
Contact:
WANG Gen-Xuan
Supported by:
摘要:
荒漠优势物种生物量的定量测量是荒漠土壤管理的重要依据。为精确估计民勤典型绿洲-荒漠过渡带中优势物种生物量,我们用随机选取的82个10 m×10 m的样方进行优势物种调查。结果显示试验地物种结构简单,而且总盖度仅为16.12%。选取5种荒漠优势物种(白刺(Nitraria tangutorum)、沙拐枣(Calligonum mongolicum)、梭梭(Haloxylon ammodendron)、沙蓬(Agriophyllum squarrosum)和盐生草(Halogeton arachnoideus)),利用全挖法测定其地上和地下生物量。用测定生物量80%的数据分析每一种植物地上和地下干、鲜生物量与其自身的形态参数地径、高度和冠幅之间的相关关系,再利用线性回归分析方法,以相关性显著的形态参数为自变量确定了预测试验地每一优势物种最适宜的地上及地下干、鲜生物量的回归模型。研究结果证实包括地茎(除白刺)和盖度为自变量的回归方程和5种优势荒漠植物的生物量拟合度很好,用测定生物量20%的数据对所有模型进行检验,证实所有生物量的估测模型能够精确预测优势荒漠物种生物量。
魏小平, 赵长明, 王根轩, 陈宝明, 程栋梁. 民勤荒漠绿洲过渡带优势植物地上和地下生物量的估测模型. 植物生态学报, 2005, 29(6): 878-883. DOI: 10.17521/cjpe.2005.0116
WEI Xiao-Ping, ZHAO Chang-Ming, WANG Gen-Xuan, CHEN Bao-Ming, CHENG Dong-Liang. ESTIMATION OF ABOVE- AND BELOW-GROUND BIOMASS OF DOMINANT DESERT PLANT SPECIES IN AN OASIS-DESERT ECOTONE OF MINQIN, CHINA. Chinese Journal of Plant Ecology, 2005, 29(6): 878-883. DOI: 10.17521/cjpe.2005.0116
Plant species | Species number per sample (Mean±SD) | Frequency (%) | Coverage (%) | Importance value | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agriophyllum squarrosum | 7 | 30 | 0 | 70 | ||||||||||||||||||
Nitraria tangutorum | 1 | 7 | 9 | 69 | ||||||||||||||||||
Calligonum mongolicum | 5 | 26 | 2 | 66 | ||||||||||||||||||
Haloxylon ammodendron | 1 | 7 | 2 | 29 | ||||||||||||||||||
Halogeton arachnoideus | 2 | 10 | 0 | 23 | ||||||||||||||||||
Phragmites communis | 1 | 5 | 0 | 10 | ||||||||||||||||||
Sophora alopecuroides | 0 | 3 | 0 | 6 | ||||||||||||||||||
Limonium aureum | 8 | 2 | 0 | 4 | ||||||||||||||||||
Artemisia arenaria | 0 | 2 | 0 | 4 | ||||||||||||||||||
Thermopsis schischkinii | 0 | 2 | 0 | 4 | ||||||||||||||||||
Elaeagnus angustifolia | 0 | 0 | 0 | 3 | ||||||||||||||||||
Suaeda glauca | 0 | 1 | 0 | 2 | ||||||||||||||||||
Hedysarum scoparium | 0 | 0 | 0 | 1 | ||||||||||||||||||
Bassia dasyphylla | 0 | 0 | 0 | 0 | ||||||||||||||||||
Caragana microphylla | 0 | 0 | 0 | 0 | ||||||||||||||||||
Cirsium setosum | 0.05±0.27 | 0.24 | 0.001 | 0.466 |
Table 1 Analysis of dominant species in study area
Plant species | Species number per sample (Mean±SD) | Frequency (%) | Coverage (%) | Importance value | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agriophyllum squarrosum | 7 | 30 | 0 | 70 | ||||||||||||||||||
Nitraria tangutorum | 1 | 7 | 9 | 69 | ||||||||||||||||||
Calligonum mongolicum | 5 | 26 | 2 | 66 | ||||||||||||||||||
Haloxylon ammodendron | 1 | 7 | 2 | 29 | ||||||||||||||||||
Halogeton arachnoideus | 2 | 10 | 0 | 23 | ||||||||||||||||||
Phragmites communis | 1 | 5 | 0 | 10 | ||||||||||||||||||
Sophora alopecuroides | 0 | 3 | 0 | 6 | ||||||||||||||||||
Limonium aureum | 8 | 2 | 0 | 4 | ||||||||||||||||||
Artemisia arenaria | 0 | 2 | 0 | 4 | ||||||||||||||||||
Thermopsis schischkinii | 0 | 2 | 0 | 4 | ||||||||||||||||||
Elaeagnus angustifolia | 0 | 0 | 0 | 3 | ||||||||||||||||||
Suaeda glauca | 0 | 1 | 0 | 2 | ||||||||||||||||||
Hedysarum scoparium | 0 | 0 | 0 | 1 | ||||||||||||||||||
Bassia dasyphylla | 0 | 0 | 0 | 0 | ||||||||||||||||||
Caragana microphylla | 0 | 0 | 0 | 0 | ||||||||||||||||||
Cirsium setosum | 0.05±0.27 | 0.24 | 0.001 | 0.466 |
Species | Weight (g·plant-1) | Height of sand mounds (cm·plant-1) | Basal diameter (cm·plant-1) | Total height (cm·plant-1) | Canopy cover (m2·plant-1) | |
---|---|---|---|---|---|---|
Above-ground | Below-ground | |||||
Nitraria tangutorum Calligonum mongolicum Haloxylon ammodendron Agriophyllum squarrosum Halogeton arachnoideus | 288.91±320.66 34.69±17.37 1 876.36±836.31 4.69±2.29 6.24±4.26 | 721.55±779.67 32.51±17.08 - 0.59±0.35 0.70±0.49 | 27.72±21.29 - - - - | - 0.99±0.47 2.93±1.04 0.32±0.08 0.35±0.17 | 28.32±6.75 45.10±16.41 221.59±75.26 18.78±6.81 11.72±3.75 | 3.71±4.69 0.24±0.13 0.35±0.21 0.11±0.06 0.09±0.06 |
Table 2 Plant species and average morphological characteristics of dominant species
Species | Weight (g·plant-1) | Height of sand mounds (cm·plant-1) | Basal diameter (cm·plant-1) | Total height (cm·plant-1) | Canopy cover (m2·plant-1) | |
---|---|---|---|---|---|---|
Above-ground | Below-ground | |||||
Nitraria tangutorum Calligonum mongolicum Haloxylon ammodendron Agriophyllum squarrosum Halogeton arachnoideus | 288.91±320.66 34.69±17.37 1 876.36±836.31 4.69±2.29 6.24±4.26 | 721.55±779.67 32.51±17.08 - 0.59±0.35 0.70±0.49 | 27.72±21.29 - - - - | - 0.99±0.47 2.93±1.04 0.32±0.08 0.35±0.17 | 28.32±6.75 45.10±16.41 221.59±75.26 18.78±6.81 11.72±3.75 | 3.71±4.69 0.24±0.13 0.35±0.21 0.11±0.06 0.09±0.06 |
Species biomass | Correlation coefficients | |||
---|---|---|---|---|
Sand mounds at height (cm) | Basal diameter (cm) | Total height (cm) | Canopy cover (cm2) | |
Nitraria tangutorum Above-ground dry biomass, ADB (g) Below-ground fresh biomass, BFB (g) Total fresh biomass, TFB (g) Total dry biomass, TDB (g) | 0.711a 0.810a 0.780a 0.786a | - - - - | -0.002 -0.099 -0.065 -0.071 | 0.868a 0.918a 0.907a 0.909a |
Calligonuum mongolicum Above-ground dry biomass(g) Below-ground fresh biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - - | 0.492c 0.488c 0.437c 0.507c | 0.033 0.131 0.078 0.051 | 0.949a 0.910a 0.967a 0.922a |
Haloxylon ammodendron | ||||
Above-ground dry biomass(g) | - | 0.790a | 0.405 | 0.878a |
Agriophyllum squarrosum Above-ground dry biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - | 0.851a 0.849a 0.853a | 0.377c 0.291 0.368c | 0.704a 0.639a 0.694a |
Halogeton arachnoideus Above-ground dry biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - | 0.791a 0.807b 0.809a | 0.336c 0.339c 0.315 | 0.883a 0.785a 0.888a |
Table 3 Correlation coefficients between basal diameter, total height, canopy cover and height of sand mounds with Nitraria tangutorum and biomass of species
Species biomass | Correlation coefficients | |||
---|---|---|---|---|
Sand mounds at height (cm) | Basal diameter (cm) | Total height (cm) | Canopy cover (cm2) | |
Nitraria tangutorum Above-ground dry biomass, ADB (g) Below-ground fresh biomass, BFB (g) Total fresh biomass, TFB (g) Total dry biomass, TDB (g) | 0.711a 0.810a 0.780a 0.786a | - - - - | -0.002 -0.099 -0.065 -0.071 | 0.868a 0.918a 0.907a 0.909a |
Calligonuum mongolicum Above-ground dry biomass(g) Below-ground fresh biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - - | 0.492c 0.488c 0.437c 0.507c | 0.033 0.131 0.078 0.051 | 0.949a 0.910a 0.967a 0.922a |
Haloxylon ammodendron | ||||
Above-ground dry biomass(g) | - | 0.790a | 0.405 | 0.878a |
Agriophyllum squarrosum Above-ground dry biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - | 0.851a 0.849a 0.853a | 0.377c 0.291 0.368c | 0.704a 0.639a 0.694a |
Halogeton arachnoideus Above-ground dry biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - | 0.791a 0.807b 0.809a | 0.336c 0.339c 0.315 | 0.883a 0.785a 0.888a |
Species | Equations | Data statistics | |||||
---|---|---|---|---|---|---|---|
Estimation | Prediction | ||||||
R | N | F | P | R | P | ||
Nitraria tangutorum ADB BFB TFB TDB | Y1=68.878+0.005 932 X2 Y2=328.636+0.033 781X2 Y3=546.033+0.053 14 X2 Y4=224.909+0.021 18 X2 | 0.868 0.918 0.907 0.909 | 22 22 22 22 | 61.029 107.271 92.606 95.382 | 0.000 0.000 0.000 0.000 | 0.923 0.952 0.983 0.978 | 0.000 0.000 0.000 0.000 |
Calligonum mongolicum ADB BFB TFB TDB | Y1=-0.371+6.946X1+0.011 95X2 Y2=-11.355+14.768X1+0.022 84X2 Y3=-14.218+19.116X1+0.053 91X2 Y4=-0.865+15.524X1+0.022 34X2 | 0.966 0.929 0.974 0.944 | 21 21 21 21 | 125.341 56.956 164.913 73.749 | 0.000 0.000 0.000 0.000 | 0.993 0.985 0.976 0.994 | 0.000 0.000 0.000 0.000 |
Haloxylon ammodendron | |||||||
ADB | Y=501.709+284.065X1+0.24X2 | 0.903 | 22 | 41.885 | 0.000 | 0.917 | 0.000 |
Agriophyllum squarrosum ADB TFB TDB | Y1= -3.348+20.230X1+0.001 453X2 Y2= -8.422+69.941X1+0.003 591X2 Y3= -3.870+23.298X1+0.001 571X2 | 0.906 0.881 0.904 | 33 33 33 | 69.004 52.199 67.045 | 0.000 0.000 0.000 | 0.954 0.947 0.968 | 0.000 0.000 0.000 |
Halogeton arachnoideus ADB TFB TDB | Y1= -0.485+3.455X1+0.006 1X2 Y2= -14.031+118.501X1+0.025 6X2 Y3= -0.653+5.179X1+0.006 36X2 | 0.885 0.827 0.893 | 35 35 35 | 57.983 34.693 63.227 | 0.000 0.000 0.000 | 0.936 0.949 0.953 | 0.000 0.000 0.000 |
Table 4 Regression equations of biomass and results of analysis
Species | Equations | Data statistics | |||||
---|---|---|---|---|---|---|---|
Estimation | Prediction | ||||||
R | N | F | P | R | P | ||
Nitraria tangutorum ADB BFB TFB TDB | Y1=68.878+0.005 932 X2 Y2=328.636+0.033 781X2 Y3=546.033+0.053 14 X2 Y4=224.909+0.021 18 X2 | 0.868 0.918 0.907 0.909 | 22 22 22 22 | 61.029 107.271 92.606 95.382 | 0.000 0.000 0.000 0.000 | 0.923 0.952 0.983 0.978 | 0.000 0.000 0.000 0.000 |
Calligonum mongolicum ADB BFB TFB TDB | Y1=-0.371+6.946X1+0.011 95X2 Y2=-11.355+14.768X1+0.022 84X2 Y3=-14.218+19.116X1+0.053 91X2 Y4=-0.865+15.524X1+0.022 34X2 | 0.966 0.929 0.974 0.944 | 21 21 21 21 | 125.341 56.956 164.913 73.749 | 0.000 0.000 0.000 0.000 | 0.993 0.985 0.976 0.994 | 0.000 0.000 0.000 0.000 |
Haloxylon ammodendron | |||||||
ADB | Y=501.709+284.065X1+0.24X2 | 0.903 | 22 | 41.885 | 0.000 | 0.917 | 0.000 |
Agriophyllum squarrosum ADB TFB TDB | Y1= -3.348+20.230X1+0.001 453X2 Y2= -8.422+69.941X1+0.003 591X2 Y3= -3.870+23.298X1+0.001 571X2 | 0.906 0.881 0.904 | 33 33 33 | 69.004 52.199 67.045 | 0.000 0.000 0.000 | 0.954 0.947 0.968 | 0.000 0.000 0.000 |
Halogeton arachnoideus ADB TFB TDB | Y1= -0.485+3.455X1+0.006 1X2 Y2= -14.031+118.501X1+0.025 6X2 Y3= -0.653+5.179X1+0.006 36X2 | 0.885 0.827 0.893 | 35 35 35 | 57.983 34.693 63.227 | 0.000 0.000 0.000 | 0.936 0.949 0.953 | 0.000 0.000 0.000 |
[1] | Assaeed AM (1997). Estimation of biomass and utilization of three perennial range grasses in Saudi Arabia. Journal of Arid Environments, 36,103-111. |
[2] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431,181-184.
URL PMID |
[3] | Clutter JL, Forston JC, Pienaar LV, Brister GH, Bailey RL (1983). Timber Management: a Quantitative Approach. Wiley Press, New York, 333. |
[4] | Guevara JC, Gonnet JM, Estevez OR (2002). Biomass estimation for native perennial grasses in the plain of Mendoza, Argentina. Journal of Arid Environments, 50,613-619. |
[5] | Hatton TJ, West NE, Johnson PS (1986). Relationships of the error associated with ocular estimation and actual total cover. Journal of Range Management, 39,91-92. |
[6] | Bi H, Turner J, Lambert MJ (2004). Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees, 18,467-479. |
[7] |
Jackson RB, Canadell J, Ehleringer JR (1996). A global analysis of root distribution for terrestrial biomes. Oecologia, 108,389-411.
URL PMID |
[8] | Jia BQ (贾宝全), Cai TJ (蔡体久), Gao ZH (高志海), Ding F (丁峰), Zhang GZ (张国忠) (2002). Biomass forcast equations of Nitraria tangutorum shrub in sand dune. Journal of Arid Land Resources and Environment (干旱区资源与环境), 16 (1),96-99. (in Chinese with English abstract) |
[9] | Ma XW, Li BG, Wu CR, Peng HJ, Guo YZ (2003). Predicting of temporal-spatial change of groundwater table resulted from current land-use in Minqin oasis. Advance Water Science, 14,85-90. |
[10] | Návar J, Méndez E, Nájera A, Graciano J, Dale V, Parresol B (2004). Biomass equations for shrub species of Tamaulipan thornscrub of North-eastern Mexico. Journal of Arid Environments, 59,657-674. |
[11] | Návar J, Nájera J, Jurado E (2001). Preliminary estimates of biomass growth in the Tamaulipan thornscrub in North-eastern Mexico. Journal of Arid Environments, 47,281-290. |
[12] | Návar J, Nájera J, Jurado E (2002). Biomass estimation equations in the Tamaulipan thornscrub of north-eastern Mexico. Journal of Arid Environments, 52,167-179. |
[13] | Padrón E, Navarro RM (2004). Estimation of above-ground biomass in naturally occurring populations of Prosopis pallida. Journal of Arid Environments, 56,283-292. |
[14] | Parresol B (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45,573-593. |
[15] | Riegelhaupt E, da Silva IB, Campello FB, Pareyn F (1990). Volume, weight and product tables for Prosopis juliflora (Sw) DC at Rio Grande do Norte.In: Habit MA, Saavedra JC eds. The Current State of Knowledge on Prosopis juliflore. FAO, Rome, Italy,69-91. |
[16] |
Schimel D, Mellillo J, Tian H, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000). Contribution of increasing CO 2 and climate to carbon storage by ecosystems in the United States. Science, 287,2004-2006.
URL PMID |
[17] | Snee RD (1977). Validation of regression equations: methods and examples. Technometrics, 19,415-428. |
[18] | von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001). Diversity of vegetation patterns and desertification. Physical Review Letters, 87,198101-4. |
[19] | Wang B (王兵), Cui XH (崔向慧) (2004). Researches on laws of water balance at ecotone between oasis and desert in Minqin. Acta Ecology Sinica (生态学报), 24,235-240. (in Chinese with English abstract) |
[20] | Wang QS (王庆琐), Li B (李博) (1994). Preliminary study on biomass of Artemisia ordosica community in Ordos plateau sandland of China. Acta Phytoecologica Sinica (植物生态学报), 18,347-353. (in Chinese with English abstract) |
[21] | Zhao CY (赵成义), Song YD (宋郁东), Wang YC (王玉潮), Jiang PA (蒋平安) (2004). Estimation of aboveground biomass of desert plants. Chinese Journal of Applied Ecology (应用生态学报), 15,49-52. (in Chinese with English abstract) |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[4] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[5] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[6] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[7] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[8] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[9] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[10] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[11] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[12] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[13] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[14] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[15] | 肖兰, 董标, 张琳婷, 邓传远, 李霞, 姜德刚, 林勇明. 渤海无居民海岛主要植被类型群落特征[J]. 植物生态学报, 2024, 48(1): 127-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19