植物生态学报 ›› 2021, Vol. 45 ›› Issue (2): 197-206.DOI: 10.17521/cjpe.2020.0263
所属专题: 全球变化与生态系统
蒋芬1,2,3, 黄娟1,2, 褚国伟1,2, 程严1,2,3, 刘旭军1,2,3, 刘菊秀1,2, 列志旸1,2,3,*()
收稿日期:
2020-08-03
接受日期:
2020-12-12
出版日期:
2021-02-20
发布日期:
2021-03-09
通讯作者:
列志旸
作者简介:
*(liezhiyang@scbg.ac.cn)基金资助:
JIANG Fen1,2,3, HUANG Juan1,2, CHU Guo-Wei1,2, CHENG Yan1,2,3, LIU Xu-Jun1,2,3, LIU Ju-Xiu1,2, LIE Zhi-Yang1,2,3,*()
Received:
2020-08-03
Accepted:
2020-12-12
Online:
2021-02-20
Published:
2021-03-09
Contact:
LIE Zhi-Yang
Supported by:
摘要:
磷(P)是森林生态系统生产力的重要限制性元素。土壤磷的有效性取决于磷的存在形态及其转化过程。目前有关增温如何调控磷形态转化过程, 从而促进土壤有效磷含量增加的机制尚未明确。该研究以南亚热带森林为研究对象, 采用沿海拔高度从300 m下降至30 m以模拟温度自然上升的方法, 采集该林型0-10、10-20、20-40 cm的土壤, 并用适用于酸性土壤的连续浸提方法分离不同形态磷, 研究增温对土壤不同形态磷含量的影响, 探讨土壤不同形态磷与有效磷的关系, 识别对土壤有效磷在增温背景下增加有重要贡献的磷组分。结果表明增温使0-10 cm的无机钙磷(Ca-Pi)及20-40 cm的无机铁磷(Fe-Pi)和总无机磷含量分别显著增加了65.5%、17.9%和18.5%, 但对总有机磷及各有机磷组分含量均无显著影响。土壤不同形态磷与有效磷含量的相关分析表明, 有效磷与无机态的不同形态磷及有机铝磷、有机铁磷含量均显著正相关, 其中与Fe-Pi含量的相关性最强。通过土壤不同形态磷与有效磷含量的通径分析进一步发现, 无机铝磷、Fe-Pi是土壤磷转化过程中的重要中间过渡性磷组分, 且Fe-Pi是促进有效磷含量增加最重要的直接贡献磷组分。结合前期研究结果, 增温可能增大了凋落物磷对土壤磷的输入, 还可能强化了土壤的吸附和沉淀过程, 使得更多进入到土壤的溶解态磷转化为Ca-Pi、Fe-Pi等缓效磷源, 其中Fe-Pi可能成为南亚热带森林在气候变暖背景下最重要的有效磷来源。
蒋芬, 黄娟, 褚国伟, 程严, 刘旭军, 刘菊秀, 列志旸. 增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献. 植物生态学报, 2021, 45(2): 197-206. DOI: 10.17521/cjpe.2020.0263
JIANG Fen, HUANG Juan, CHU Guo-Wei, CHENG Yan, LIU Xu-Jun, LIU Ju-Xiu, LIE Zhi-Yang. Effects of warming on soil phosphorus fractions and their contributions to available phosphorus in south subtropical forests. Chinese Journal of Plant Ecology, 2021, 45(2): 197-206. DOI: 10.17521/cjpe.2020.0263
图1 对照和增温处理下南亚热带森林不同土层的土壤温度和含水量(平均值+标准误, n = 3)。不同小写字母表示同一土层不同处理间差异显著(p < 0.05)。
Fig. 1 Soil temperature and water content of different soil layers under control and warming treatments in south subtropical forests (mean + SE, n = 3). Different lowercase letters indicate significant differences between different treatments (p < 0.05).
NH4Cl-Pi | Al-Pi | Fe-Pi | Ca-Pi | O-Pi | Al-Po | Fe-Po | O-Po | Pi | Po | Pt | |
---|---|---|---|---|---|---|---|---|---|---|---|
W | 0.487 | 0.473 | <0.01 | <0.05 | 0.571 | 0.794 | 0.264 | 0.076 | <0.05 | 0.093 | <0.05 |
L | <0.05 | <0.01 | <0.001 | 0.067 | <0.01 | <0.01 | <0.01 | 0.855 | <0.001 | <0.05 | <0.001 |
W × L | 0.740 | 0.942 | 0.963 | 0.270 | 0.817 | <0.05 | 0.690 | 0.737 | 0.986 | 0.667 | 0.814 |
表1 基于双因素方差分析结果得到的增温和土层及其交互作用对南亚热带森林土壤不同形态磷(P)含量的影响
Table 1 Results (p values) of two-way ANOVA about the effects of warming, soil layer and their interactions on concentrations of different soil phosphorus (P) fractions in south subtropical forests
NH4Cl-Pi | Al-Pi | Fe-Pi | Ca-Pi | O-Pi | Al-Po | Fe-Po | O-Po | Pi | Po | Pt | |
---|---|---|---|---|---|---|---|---|---|---|---|
W | 0.487 | 0.473 | <0.01 | <0.05 | 0.571 | 0.794 | 0.264 | 0.076 | <0.05 | 0.093 | <0.05 |
L | <0.05 | <0.01 | <0.001 | 0.067 | <0.01 | <0.01 | <0.01 | 0.855 | <0.001 | <0.05 | <0.001 |
W × L | 0.740 | 0.942 | 0.963 | 0.270 | 0.817 | <0.05 | 0.690 | 0.737 | 0.986 | 0.667 | 0.814 |
图2 对照和增温处理下南亚热带森林每个土层的土壤不同形态磷(P)含量(平均值+标准误, n = 3)。Al-Pi, 无机铝磷; Al-Po, 有机铝磷; Ca-Pi, 无机钙磷; Fe-Pi, 无机铁磷; Fe-Po, 有机铁磷; NH4Cl-Pi, NH4Cl提取态磷; O-Pi, 无机闭蓄态磷; O-Po, 有机闭蓄态磷; Pi, 总无机磷; Po, 总有机磷; Pt, 总磷。不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 2 Concentrations of different soil phosphorus (P) fractions of three soil layers under control and warming treatments in south subtropical forests (mean + SE, n = 3). Al-Pi, inorganic P associated with aluminum; Al-Po, organic P associated with aluminum; Ca-Pi, inorganic P associated with calcium; Fe-Pi, inorganic P associated with iron; Fe-Po, organic P associated with iron; NH4Cl-Pi, NH4Cl extracted P; O-Pi, inorganic occluded P; O-Po, organic occluded P; Pi, total inorganic P; Po, total organic P; Pt, total P. Different lowercase letters indicate significant differences between different treatments (p < 0.05)
AP | NH4Cl-Pi | Al-Pi | Fe-Pi | Ca-Pi | O-Pi | Al-Po | Fe-Po | |
---|---|---|---|---|---|---|---|---|
NH4Cl-Pi | 0.668** | |||||||
Al-Pi | 0.852** | 0.402 | ||||||
Fe-Pi | 0.916** | 0.690** | 0.865** | |||||
Ca-Pi | 0.536* | 0.494* | 0.556* | 0.661** | ||||
O-Pi | 0.738** | 0.417 | 0.810** | 0.754** | 0.428 | |||
Al-Po | 0.667** | 0.421 | 0.569* | 0.667** | 0.136 | 0.717** | ||
Fe-Po | 0.676** | 0.215 | 0.789** | 0.743** | 0.394 | 0.773** | 0.609** | |
O-Po | 0.022 | 0.007 | 0.052 | 0.227 | 0.217 | -0.044 | 0.129 | 0.283 |
表2 南亚热带森林土壤不同形态磷(P)含量间的相关系数
Table 2 Correlation coefficients among concentrations of different soil phosphorus (P) fractions in south subtropical forests
AP | NH4Cl-Pi | Al-Pi | Fe-Pi | Ca-Pi | O-Pi | Al-Po | Fe-Po | |
---|---|---|---|---|---|---|---|---|
NH4Cl-Pi | 0.668** | |||||||
Al-Pi | 0.852** | 0.402 | ||||||
Fe-Pi | 0.916** | 0.690** | 0.865** | |||||
Ca-Pi | 0.536* | 0.494* | 0.556* | 0.661** | ||||
O-Pi | 0.738** | 0.417 | 0.810** | 0.754** | 0.428 | |||
Al-Po | 0.667** | 0.421 | 0.569* | 0.667** | 0.136 | 0.717** | ||
Fe-Po | 0.676** | 0.215 | 0.789** | 0.743** | 0.394 | 0.773** | 0.609** | |
O-Po | 0.022 | 0.007 | 0.052 | 0.227 | 0.217 | -0.044 | 0.129 | 0.283 |
因子 Factor | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | |||||||
---|---|---|---|---|---|---|---|---|---|
X1→Y | X2→Y | X3→Y | X4→Y | X5→Y | X6→Y | X7→Y | X8→Y | ||
X1→ | 0.166 | 0.138 | 0.384 | -0.022 | -0.065 | 0.056 | -0.012 | -0.001 | |
X2→ | 0.343 | 0.067 | 0.481 | -0.025 | -0.126 | 0.076 | -0.045 | -0.008 | |
X3→ | 0.556 | 0.115 | 0.297 | -0.030 | -0.118 | 0.089 | -0.042 | -0.035 | |
X4→ | -0.045 | 0.082 | 0.191 | 0.378 | -0.067 | 0.018 | -0.022 | -0.033 | |
X5→ | -0.156 | 0.069 | 0.278 | 0.419 | -0.019 | 0.096 | -0.044 | 0.007 | |
X6→ | 0.134 | 0.070 | 0.195 | 0.371 | -0.006 | -0.112 | -0.035 | -0.020 | |
X7→ | -0.057 | 0.035 | 0.271 | 0.413 | -0.018 | -0.121 | 0.082 | -0.044 | |
X8→ | -0.154 | 0.001 | 0.018 | 0.126 | -0.010 | 0.007 | 0.017 | -0.016 |
表3 南亚热带森林土壤不同形态磷(P)与有效磷含量的通径分析
Table 3 Path analysis of concentrations of different soil phosphorus (P) fractions to available P concentration in south subtropical forests
因子 Factor | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | |||||||
---|---|---|---|---|---|---|---|---|---|
X1→Y | X2→Y | X3→Y | X4→Y | X5→Y | X6→Y | X7→Y | X8→Y | ||
X1→ | 0.166 | 0.138 | 0.384 | -0.022 | -0.065 | 0.056 | -0.012 | -0.001 | |
X2→ | 0.343 | 0.067 | 0.481 | -0.025 | -0.126 | 0.076 | -0.045 | -0.008 | |
X3→ | 0.556 | 0.115 | 0.297 | -0.030 | -0.118 | 0.089 | -0.042 | -0.035 | |
X4→ | -0.045 | 0.082 | 0.191 | 0.378 | -0.067 | 0.018 | -0.022 | -0.033 | |
X5→ | -0.156 | 0.069 | 0.278 | 0.419 | -0.019 | 0.096 | -0.044 | 0.007 | |
X6→ | 0.134 | 0.070 | 0.195 | 0.371 | -0.006 | -0.112 | -0.035 | -0.020 | |
X7→ | -0.057 | 0.035 | 0.271 | 0.413 | -0.018 | -0.121 | 0.082 | -0.044 | |
X8→ | -0.154 | 0.001 | 0.018 | 0.126 | -0.010 | 0.007 | 0.017 | -0.016 |
[1] |
Allison SD, Vitousek PM (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37,937-944.
DOI URL |
[2] |
Barrow NJ (2015). A mechanistic model for describing the sorption and desorption of phosphate by soil. European Journal of Soil Science, 66,9-18.
DOI URL |
[3] | Bei ZX, Zhang QF, Zheng W, Yang LM, Chen YM, Yang YS (2018). Effects of simulated warming on soil phosphorus availability in subtropical Chinese fir plantation. Acta Ecologica Sinica, 38,1106-1113. |
[ 贝昭贤, 张秋芳, 郑蔚, 杨柳明, 陈岳民, 杨玉盛 (2018). 模拟增温对中亚热带杉木人工林土壤磷有效性的影响. 生态学报, 38,1106-1113.] | |
[4] |
Chen H, Dong S, Liu L, Ma C, Zhang T, Zhu X, Mo J (2013). Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest. PLOS ONE, 8,e84101. DOI: 10.1371/journal.pone.0084101.
DOI URL |
[5] | Chen ML, Chen H, Mao QG, Zhu XM, Mo JM (2016). Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: a review. Acta Ecologica Sinica, 36,4965-4976. |
[ 陈美领, 陈浩, 毛庆功, 朱晓敏, 莫江明 (2016). 氮沉降对森林土壤磷循环的影响. 生态学报, 36,4965-4976.] | |
[6] |
Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001). Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications, 11,371-384.
DOI URL |
[7] |
Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196,807-815.
DOI URL |
[8] | Doolette AL, Smernik RJ (2011). Soil organic phosphorus speciation using spectroscopic techniques//Bünemann EK, Oberson A, Frossard E. Phosphorus in Action. Springer, Berlin.3-36. |
[9] | Du JJ, Chen ZW (2010). Method of path analysis with SPSS linear regression. Bulletin of Biology, 45(2),4-6. |
[ 杜家菊, 陈志伟 (2010). 使用SPSS线性回归实现通径分析的方法. 生物学通报, 45(2),4-6.] | |
[10] | Du JJ, Zhang YP, Bai JL, Yin ZP (1993). Study on characteristics of phosphorus adsorption and temperature effect in several soils in Shaanxi. Chinese Journal of Soil Science, 24(6),241-243. |
[ 杜建军, 张一平, 白锦鳞, 尹志鹏 (1993). 陕西几种土壤磷吸附特征及温度效应的研究. 土壤通报, 24(6),241-243.] | |
[11] |
Fisk M, Santangelo S, Minick K (2015). Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biology & Biochemistry, 81,212-218.
DOI URL |
[12] | Gu YC, Qin SW (1997). Accumulation, transformation and availability of phosphorus in fluvoaquic soil under long-term application of phosphate fertilizer. Soil, 29(1),13 -17. |
[ 顾益初, 钦绳武 (1997). 长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性. 土壤, 29(1),13-17.] | |
[13] |
Hou E, Chen C, Luo Y, Zhou G, Kuang Y, Zhang Y, Heenan M, Lu X, Wen D (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24,3344-3356.
DOI URL |
[14] |
Hou E, Chen C, McGroddy ME, Wen D (2012). Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. PLOS ONE, 7,e52071. DOI: 10.1371/journal.pone.0052071.
DOI URL |
[15] | Jia G, Shevliakova E, Artaxo P, De Noblet-Ducoudre N, Houghton R, House J, Kitajima K, Lennard C, Popp A, Sirin A, Sukumar R, Verchot L (2019). Land-climate interactions//Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge University Press, Cambridge, UK. 1-11. |
[16] | Jiang BF, Gu YC (1989). A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Scientia Agricultura Sinica, 22,58-66. |
[ 蒋柏藩, 顾益初 (1989). 石灰性土壤无机磷分级体系的研究. 中国农业科学, 22,58-66.] | |
[17] | Jiang Y, Rocha AV, Rastetter EB, Shaver GR, Mishra U, Zhuang Q, Kwiatkowski BL (2016). C-N-P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska. Landscape Ecology, 31,195-213. |
[18] |
Lie ZY, Lin W, Huang WJ, Fang X, Huang CM, Wu T, Chu GW, Liu SZ, Meng Z, Zhou GY, Liu JX (2019). Warming changes soil N and P supplies in model tropical forests. Biology and Fertility of Soils, 55,751-763.
DOI URL |
[19] |
Liu JX, Li YL, Liu SZ, Li YY, Chu GW, Meng Z, Zhang DQ (2013). An introduction to an experimental design for studying effects of air temperature rise on model forest ecosystems. Chinese Journal of Plant Ecology, 37,558-565.
DOI URL |
[ 刘菊秀, 李跃林, 刘世忠, 李义勇, 褚国伟, 孟泽, 张德强 (2013). 气温上升对模拟森林生态系统影响实验的介绍. 植物生态学报, 37,558-565.]
DOI |
|
[20] |
Liu X, Yang Z, Lin C, Giardina CP, Xiong D, Lin W, Chen S, Xu C, Chen G, Xie J, Li Y, Yang Y (2017). Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation? Agricultural and Forest Meteorology, 246,78-85.
DOI URL |
[21] | Long XY (2011). Climatic Response of Pedogenic Iron Oxides in Subtropical and Tropical Regions. PhD dissertation, Nanjing University, Nanjing.121-122. |
[ 龙晓泳 (2011). 热带亚热带表生铁氧化物的气候响应研究. 博士学位论文, 南京大学, 南京.121-122.] | |
[22] |
McDowell RW, Condron LM (2000). Chemical nature and potential mobility of phosphorus in fertilized grassland soils. Nutrient Cycling in Agroecosystems, 57,225-233.
DOI URL |
[23] |
Mei LL, Yang X, Zhang SQ, Zhang T, Guo JX (2019). Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N:P ratios under warming and nitrogen addition in a temperate meadow ecosystem. Science of the Total Environment, 686,1129-1139.
DOI URL |
[24] |
Reed SC, Yang X, Thornton PE (2015). Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytologist, 208,324-329.
DOI URL |
[25] | Ren ZW, Wu JM, Shi PP, Zhou CF (2017). Research progress on phosphorus chemical behavior and influencing factors in red soil. Inner Mongolia Forestry Investigation and Design, 40,100-104. |
[ 任子文, 吴佳美, 石佩佩, 周垂帆 (2017). 红壤磷素化学行为及影响因素研究进展. 内蒙古林业调查设计, 40,100-104.] | |
[26] |
Rui YC, Wang YF, Chen CR, Zhou XQ, Wang SP, Xu ZH, Duan JC, Kang XM, Lu SB, Luo CY (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357,73-87.
DOI URL |
[27] | Santos F, Abney R, Barnes M, Bogie N, Ghezzehei TA, Jin L, Moreland K, Sulman BN, Berhe AA (2019). The role of the physical properties of soil in determining biogeochemical responses to soil warming//Mohan JE. Ecosystem Consequeces of Soil Warming. Academic Press, Salt Lake City, USA. 209-244. |
[28] |
Schreeg LA, Mack MC, Turner BL (2013). Leaf litter inputs decrease phosphate sorption in a strongly weathered tropical soil over two time scales. Biogeochemistry, 113,507-524.
DOI URL |
[29] |
Siebers N, Sumann M, Kaiser K, Amelung W (2017). Climatic effects on phosphorus fractions of native and cultivated North American grassland soils. Soil Science Society of America Journal, 81,299-309.
DOI URL |
[30] | Sims JT, Pierzynski GM (2005). Chemistry of phosphorus in soils//Tabatabai MA, Sparks DL. Chemical Processes in Soils. Soil Science Society of America, Madison, USA. 151-192. |
[31] |
Spohn M, Schleuss PM (2019). Addition of inorganic phosphorus to soil leads to desorption of organic compounds and thus to increased soil respiration. Soil Biology & Biochemistry, 130,220-226.
DOI URL |
[32] | Su YY (2012). Study on the Spatial-temporal Variability of Phosphorus and Soil Adsorption in Forest Belt Surrounding Taihu Lake. Master degree dissertation, Nanjing Forestry University, Nanjing.4-5. |
[ 苏莹莹 (2012). 环太湖林带磷素时空变异及土壤吸附作用研究. 硕士学位论文, 南京林业大学, 南京.4-5.] | |
[33] | Sun GF, Jin JY, Shi YL (2011). Research advance on soil phosphorus forms and their availability to crops in soil. Soil and Fertilizer Sciences in China, (2),1-9. |
[ 孙桂芳, 金继运, 石元亮 (2011). 土壤磷素形态及其生物有效性研究进展. 中国土壤与肥料, (2),1-9.] | |
[34] |
Sun QQ, Wang ZY, Zhao H, Wang XJ, Lv HF, Chen Y (2012). Effect of site-specific fertilization on soil phosphorus in purple garden soil. Acta Ecologica Sinica, 32,2539-2549.
DOI URL |
[ 孙倩倩, 王正银, 赵欢, 王小晶, 吕慧峰, 陈怡 (2012). 定位施肥对紫色菜园土磷素状况的影响. 生态学报, 32,2539-2549.] | |
[35] | Sun Y, Peng S, Goll DS, Ciais P, Guenet B, Guimberteau M, Hinsinger P, Janssens IA, Peñuelas J, Piao S, Poulter B, Violette A, Yang X, Yin Y, Zeng H (2017). Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earth's Future, 5,730-749. |
[36] | Tang CD, Guo JF, Zhang Z, Cai XZ, Yang YS (2017). Effects of soil warming and precipitation exclusion on soil nutrients and microbial biomass in young Chinese fir plantation. Journal of Subtropical Resources and Environment, 12,40-45. |
[ 唐偲頔, 郭剑芬, 张政, 蔡小真, 杨玉盛 (2017). 增温和隔离降雨对杉木幼林土壤养分和微生物生物量的影响. 亚热带资源与环境学报, 12,40-45.] | |
[37] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13,87-115. |
[38] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20,5-15.
DOI URL |
[39] |
Wang H, Liu S, Schindlbacher A, Wang J, Yang Y, Song Z, You Y, Shi Z, Li Z, Chen L, Ming A, Lu L, Cai D (2019). Experimental warming reduced topsoil carbon content and increased soil bacterial diversity in a subtropical planted forest. Soil Biology & Biochemistry, 133,155-164.
DOI URL |
[40] | Wang T, Zhou JM, Wang HY, Du CW, Chen XQ (2010). Influences of temperature and duration of incubation on transformation of phosphate fertilizers in black soil. Acta Pedologica Sinica, 47,1188-1193. |
[ 王涛, 周健民, 王火焰, 杜昌文, 陈小琴 (2010). 培养温度和时间对磷肥在黑土中转化的影响. 土壤学报, 47,1188-1193.] | |
[41] | Wang XT, Guo WD, Zhong Z, Cui XY (2009). Long term trends of soil moisture and temperature change in East China in relationship with climate background. Advances in Earth Science, 24,181-191. |
[ 王晓婷, 郭维栋, 钟中, 崔晓燕 (2009). 中国东部土壤温度、湿度变化的长期趋势及其与气候背景的联系. 地球科学进展, 24,181-191.] | |
[42] |
Wu T, Liu SZ, Lie ZY, Zheng MH, Duan HL, Chu GW, Meng Z, Zhou GY, Liu JX (2020). Divergent effects of a 6-year warming experiment on the nutrient productivities of subtropical tree species. Forest Ecology and Management, 461,117952. DOI: 10.1016/j.foreco.2020.117952.
DOI URL |
[43] | Xiao HL, Zheng XJ (2000). Effects of soil warming on some soil chemical properties. Soil and Environmental Sciences, 9,316-321. |
[ 肖辉林, 郑习健 (2000). 土壤温度上升对某些土壤化学性质的影响. 土壤与环境, 9,316-321.] | |
[44] | Yan JL (2016). Study on the Adsorption of Iron Oxide-organic Matter Complex on Phosphorus and Its Regulation Effects on Phosphorus Fraction. PhD dissertation, Southwest University, Chongqing.4-5. |
[ 闫金龙 (2016). 铁氧化物-有机质复合物对磷的吸附与形态调控效应研究. 博士学位论文, 西南大学,重庆.4-5.] | |
[45] | Yan YP (2015). Adsorption, Desorption and Precipitation of Several Soil Organic Phosphates on Iron and Aluminum (Oxyhydr) Oxide. PhD dissertation, Huazhong Agricultural University, Wuhan.2-4. |
[ 严玉鹏 (2015). 几种土壤有机磷在铁铝氧化物表面的吸附、解吸与沉淀. 博士学位论文, 华中农业大学, 武汉.2-4.] | |
[46] |
Yang LM, Yang ZJ, Peng YZ, Lin YY, Xiong DC, Li YQ, Yang YS (2019). Evaluating P availability influenced by warming and N deposition in a subtropical forest soil: a bioassay mesocosm experiment. Plant and Soil, 444,87-99.
DOI URL |
[47] | Yang XY (2016). Effect of Organic Acids on Black Soil Phosphorus Fractionations and Phosphorus Availability. PhD dissertation, Northeast Forestry University, Harbin.15-16. |
[ 杨小燕 (2016). 外源有机酸对黑土土壤磷形态及有效性的影响. 博士学位论文, 东北林业大学,哈尔滨.15-16.] | |
[48] | Zhang GQ (2014). Effects of Different Forms of P Fertilizer and Its Supply Strategy on Soil P Availability and P Utilization Efficiency on Calcareous Soil. Master degree dissertation, Shihezi University, Shihezi, Xinjiang.5-6. |
[ 张国桥 (2014). 不同磷源及其施用方式对石灰性土壤磷的有效性与磷肥利用效率的影响. 硕士学位论文, 石河子大学,新疆石河子.5-6.] | |
[49] |
Zhang L, Wu N, Wu Y, Luo P, Liu L, Chen WN, Hu HY (2009). Soil phosphorus form and fractionation scheme: a review. Chinese Journal of Applied Ecology, 20,1775-1782.
PMID |
[ 张林, 吴宁, 吴彦, 罗鹏, 刘琳, 陈文年, 胡红宇 (2009). 土壤磷素形态及其分级方法研究进展. 应用生态学报, 20,1775-1782.]
PMID |
|
[50] | Zhao SJ, Qi WX, Li J, Gang DG, Ran YZ (2018). Impact of water level on phosphorus flux in water level fluctuating zone at Miyun Reservior. Acta Scientiae Circumstantiae, 38,2400-2408. |
[ 赵双菊, 齐维晓, 李静, 钢迪嘎, 冉韵竹 (2018). 水位对密云水库消落区土壤磷通量影响的模拟研究. 环境科学学报, 38,2400-2408.] | |
[51] |
Zhu J, Li M, Whelan M (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Science of the Total Environment, 612,522-537.
DOI URL |
[1] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[5] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[6] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[7] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[8] | 张慧, 曾文静, 龚新桃, 马泽清. 亚热带典型树种根毛特征及其与共生真菌的关系[J]. 植物生态学报, 2023, 47(1): 88-100. |
[9] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[10] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[11] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[12] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[13] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[14] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[15] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19