植物生态学报 ›› 2021, Vol. 45 ›› Issue (2): 187-196.DOI: 10.17521/cjpe.2020.0257
所属专题: 植物功能性状
杨克彤1, 常海龙1, 陈国鹏1,*(), 俞筱押2, 鲜骏仁3
收稿日期:
2020-07-30
接受日期:
2020-12-28
出版日期:
2021-02-20
发布日期:
2021-03-09
通讯作者:
ORCID: *陈国鹏: 0000-0002-3854-8755(chgp1986@gmail.com)
基金资助:
YANG Ke-Tong1, CHANG Hai-Long1, CHEN Guo-Peng1,*(), YU Xiao-Ya2, XIAN Jun-Ren3
Received:
2020-07-30
Accepted:
2020-12-28
Online:
2021-02-20
Published:
2021-03-09
Contact:
CHEN Guo-Peng
Supported by:
摘要:
气孔是植物叶片与外界环境进行水汽交换的门户, 利用气孔特征反映植物对环境变化的响应与适应有助于了解干旱区绿化植物的适应策略。于2019年7月通过气孔印迹法对兰州市40种主要绿化植物气孔性状进行观察与测定。采用标准化主轴估计和系统独立比较分析建立气孔性状间的相关关系; 通过计算Blomgerg’sK值以检验系统发育信号; 利用聚类分析和主成分分析对气孔性状特征进行功能群划分。结果表明: (1)在所研究的植物中, 气孔性状特征在个体间差异显著, 植物生长型(乔木、小乔木、灌木和草本)会显著影响气孔长度、宽度、开度和密度, 叶习性(落叶和常绿)仅对气孔开度有显著影响; (2)气孔长度与宽度、气孔开度与面积间均为显著的异速生长关系, 气孔密度与面积和开度间为负异速生长关系; (3)系统发育会对气孔性状的相关关系产生显著影响, 虽然气孔性状的系统发育保守性不强(K < 1), 但气孔开度和气孔开张比具有显著的系统发育信号; 4)依据气孔性状特征可以将绿化植物划分为: 低密度-大面积、高密度-小面积和中等密度-适中面积共3种功能群。结合系统发育和异速生长理论能更好地解释气孔性状变异及适应策略。
杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征. 植物生态学报, 2021, 45(2): 187-196. DOI: 10.17521/cjpe.2020.0257
YANG Ke-Tong, CHANG Hai-Long, CHEN Guo-Peng, YU Xiao-Ya, XIAN Jun-Ren. Stomatal traits of main greening plant species in Lanzhou. Chinese Journal of Plant Ecology, 2021, 45(2): 187-196. DOI: 10.17521/cjpe.2020.0257
图1 兰州市主要绿化植物的气孔性状。 Ace. tru., 元宝枫; Aco. cal., 菖蒲; Ail. alt., 臭椿; Amy. per., 碧桃; Ber. thu., 日本小檗; Bux. sin., 小叶黄杨; Car. cat., 山核桃; Cer. chi., 紫荆; Cer. ser., 日本晚樱; Cra. pin., 山楂; Euc. ulm., 杜仲; Euo. jap., 冬青卫矛; Euo. maa., 白杜; For. sus., 连翘; For. vir., 金钟花; Fra. chi., 白蜡树; Gin. bil., 银杏; Hem. Ful., 萱草; Hib. syr., 木槿; Hos. pla., 玉簪; Hyl. spe., 长药八宝; Iri. tec., 鸢尾; Koe. pan., 栾树; Lig. luc., 女贞; Lig. ova., 卵叶女贞; Phe. aiz., 费菜; Pla. gra., 桔梗; Pru. cer., 樱桃李; Pun. gra., 石榴; Pyr. xer., 木梨; Rob. pse., 刺槐; Ros. luc., 亮叶月季; Sal. mat., 旱柳; Sam. wil., 接骨木; Sop. jap., 龙爪槐; Syr. obl., 紫丁香; Syr. vil., 辽东丁香; Ulm. pum., 榆树; Vit. vin., 葡萄; Yul. den., 玉兰。
Fig. 1 Stomatal traits of main greening plant species in Lanzhou. Ace. tru., Acer truncatum; Aco. cal., Acorus calamus; Ail. alt., Ailanthus altissima; Amy. per., Amygdalus persica f. duplex; Ber. thu., Berberis thunbergii; Bux. sin., Buxus sinica var. parvifolia; Car. cat., Carya cathayensis; Cer. chi., Cercis chinensis; Cer. ser., Cerasus serrulata var. lannesiana; Cra. pin., Crataegus pinnatifida; Euc. ulm., Eucommia ulmoides; Euo. jap., Euonymus japonicus; Euo. maa., Euonymus maackii; For. sus., Forsythia suspensa; For. vir., Forsythia viridissima; Fra. chi., Fraxinus chinensis; Gin. bil., Ginkgo biloba; Hem. ful., Hemerocallis fulva; Hib. syr., Hibiscus syriacus; Hos. pla., Hosta plantaginea; Hyl. spe., Hylotelephium spectabile; Iri. tec., Iris tectorum; Koe. pan., Koelreuteria paniculata; Lig. luc., Ligustrum lucidum; Lig. ova., Ligustrum ovalifolium; Phe. aiz., Phedimus aizoon; Pla. gra., Platycodon grandiflorus; Pru. cer., Prunus cerasifera; Pun. gra., Punica granatum; Pyr. xer., Pyrus xerophila; Rob. pse., Robinia pseudoacacia; Ros. luc., Rosa lucidissima; Sal. mat., Salix matsudana; Sam. wil., Sambucus williamsii; Sop. jap., Sophora japonica var. Japonica f. pendula; Syr. obl., Syringa oblata; Syr. vil., Syringa villosa subsp. wolfii; Ulm. pum., Ulmus pumila; Vit. Vin., Vitis vinifera; Yul. den., Yulania denudata.
图2 兰州市主要绿化植物生长型及叶习性对气孔性状的影响(平均值±标准误)。Dec, 落叶植物; Eve, 常绿植物; Her, 草本; Sem, 小乔木; Shr, 灌木; Tre, 乔木。SA, 气孔面积; SD, 气孔密度; SL, 气孔长度; SOL, 气孔开度; SOR, 气孔开张比; SW, 气孔宽度。不同小写字母代表差异显著(p < 0.05)。
Fig. 2 Effects of growth forms and leaf habitus on stomatal traits of main greening plant species in Lanzhou (mean ± SE). Dec, deciduous; Eve, evergreen; Her, herb; Sem, semi-tree; Shr, shrub; Tre, tree. SA, stomatal area; SD, stomatal density; SL, stomatal length; SOL, stomatal opening level; SOR, stomatal opening ratio; SW, stomatal width. Different lowercase letters indicate significant differences among growth forms and leaf habitus (p < 0.05).
图3 兰州市主要绿化植物气孔性状间的异速生长关系。SA, 气孔面积; SD, 气孔密度; SL, 气孔长度; SOL, 气孔开度; SW, 气孔宽度。
Fig. 3 Allometric relations of stomatal traits of main greening plant species in Lanzhou. SA, stomatal area; SD, stomatal density; SL, stomatal length; SOL, stomatal opening level; SW, stomatal width.
性状 Trait | K | p |
---|---|---|
SL | 0.298 | 0.110 |
SW | 0.291 | 0.140 |
SOL | 0.334 | 0.023 |
SA | 0.269 | 0.379 |
SOR | 0.688 | 0.006 |
SD | 0.281 | 0.185 |
表1 兰州市主要绿化植物气孔性状的系统发育信号
Table 1 Phylogenetic signals of stomatal traits across main greening plant species in Lanzhou
性状 Trait | K | p |
---|---|---|
SL | 0.298 | 0.110 |
SW | 0.291 | 0.140 |
SOL | 0.334 | 0.023 |
SA | 0.269 | 0.379 |
SOR | 0.688 | 0.006 |
SD | 0.281 | 0.185 |
图4 兰州市主要绿化植物基于气孔性状特征的物种功能群划分。SA, 气孔面积; SD, 气孔密度; SL, 气孔长度; SOL, 气孔开度; SOR, 气孔开张比; SW, 气孔宽度。物种缩写同图1。
Fig. 4 Classification of plant functional groups based on stomatal traits of main greening plant species in Lanzhou. SA, stomatal area; SD, stomatal density; SL, stomatal length; SOL, stomatal opening level; SOR, stomatal opening ratio; SW, stomatal width. See Fig. 1 for species abbreviation.
性状 Trait | 主成分1 Coefficients of PC 1 | 主成分2 Coefficients of PC 2 |
---|---|---|
SL | 0.512 63 | -0.044 93 |
SW | 0.501 39 | -0.010 85 |
SOL | 0.338 33 | 0.141 74 |
SA | 0.497 11 | 0.024 11 |
SOR | 0.184 12 | 0.792 84 |
SD | -0.300 55 | 0.590 43 |
表2 兰州市主要绿化植物气孔性状与主成分的相关性
Table 2 Correlations between stomatal traits of main greening plant species in Lanzhou and principal components
性状 Trait | 主成分1 Coefficients of PC 1 | 主成分2 Coefficients of PC 2 |
---|---|---|
SL | 0.512 63 | -0.044 93 |
SW | 0.501 39 | -0.010 85 |
SOL | 0.338 33 | 0.141 74 |
SA | 0.497 11 | 0.024 11 |
SOR | 0.184 12 | 0.792 84 |
SD | -0.300 55 | 0.590 43 |
[1] | Ackerly D (2009). Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proceedings of the National Academy of Sciences of the United States of America, 106,19699-19706. |
[2] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees . New Phytologist, 192,437-448.
DOI URL |
[3] |
Brodribb TJ, Jordan GJ, Carpenter RJ (2013). Unified changes in cell size permit coordinated leaf evolution. New Phytologist, 199,559-570.
DOI URL |
[4] | Chen GP, Zhao WZ, He SX, Fu X (2016). Biomass allocation and allometric relationship in aboveground components of Salix psammophila branches . Journal of Desert Research, 36,357-363. |
[ 陈国鹏, 赵文智, 何世雄, 付晓 (2016). 沙柳( Salix psammophila)丛生枝生物量最优分配与异速生长 . 中国沙漠, 36,357-363.] | |
[5] | Ding LZ, Chen YJ, Zhang JL (2014). Leaf traits and their associations among liana species in tropical rainforest. Plant Science Journal, 32,362-370. |
[ 丁凌子, 陈亚军, 张教林 (2014). 热带雨林木质藤本植物叶片性状及其关联. 植物科学学报, 32,362-370.] | |
[6] |
Drake PL, Froend RH, Franks PJ (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64,495-505.
DOI PMID |
[7] |
Duan BB, Zhao CZ, Xu T, Zheng HL, Feng W, Han L (2016). Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan Mountain in Lanzhou . Chinese Journal of Plant Ecology, 40,1289-1297.
DOI URL |
[ 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲 (2016). 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析. 植物生态学报, 40,1289-1297.]
DOI |
|
[8] |
Fan JZ, Wang D, Hu YL, Jing PP, Wang PP, Chen JQ (2016). Optimal stomatal behavior theory for simulating stomatal conductance. Chinese Journal of Plant Ecology, 40,631-642.
DOI URL |
[ 范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉 (2016). 最优气孔行为理论和气孔导度模拟. 植物生态学报, 40,631-642.]
DOI |
|
[9] |
Fiorin L, Brodribb TJ, Anfodillo T (2016). Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. New Phytologist, 209,216-227.
DOI URL |
[10] |
Franks PJ, Farquhar GD (2001). The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiology, 125,935-942.
DOI URL |
[11] | Gao GL, Feng Q, Zhang XY, Si JH, Yu TF (2018). An overview of stomatal and non-stomatal limitations to photosynthesis of plants. Arid Zone Research, 35,929-937. |
[ 高冠龙, 冯起, 张小由, 司建华, 鱼腾飞 (2018). 植物叶片光合作用的气孔与非气孔限制研究综述. 干旱区研究, 35,929-937.] | |
[12] | Gao LH, Sun H, Bai XQ, Dai S, Fan YW, Liu C, Wang XP, Yin WL (2020). Effects of climate and phylogeny on the relationship between specific leaf area and leaf element concentration of trees and shrubs in Changbai Mountain of northeastern China. Journal of Beijing Forestry University, 42(2),19-30. |
[ 高林浩, 孙晗, 白雪卡, 代爽, 樊艳文, 刘超, 王襄平, 尹伟伦 (2020). 气候、系统发育对长白山乔灌木比叶面积与叶元素含量关系的影响. 北京林业大学学报, 42(2),19-30.] | |
[13] |
Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature, 424,901-908.
PMID |
[14] | Hu XP, Ji CJ, An LH (2016). Leaf epidermis characteristics of the main grassland monocotyledonous plant species on the Tibetan Plateau. Acta Ecologica Sinica, 36,6465-6474. |
[ 胡选萍, 吉成均, 安丽华 (2016). 青藏高原草地主要单子叶植物的叶表面特征. 生态学报, 36,6465-6474.] | |
[15] | Jia JB, Liu WN, Wen SZ, Wang ZC (2019). Effects of CO2 concentration and soil moisture on leaf stomatal traits and gas exchange parameters of Phoebe bournei. Science of Soil and Water Conservation, 17,1-7. |
[ 贾剑波, 刘文娜, 文仕知, 王忠诚 (2019). 水碳控制条件对闽楠叶片气孔特征和气体交换参数的影响. 中国水土保持科学, 17,1-7.] | |
[16] | Jiang XX, Zou AL, Wang YY, Zhou XL, Ji CJ (2018). Leaf stomatal traits of woody plants and their response to nitrogen addition in typical forests in Eastern China. Acta Scientiarum Naturalium Universitatis Pekinensis, 54,839-847. |
[ 姜星星, 邹安龙, 王媛媛, 周序力, 吉成均 (2018). 我国东部典型森林木本植物的气孔特征及其对氮添加的响应. 北京大学学报(自然科学版), 54,839-847.] | |
[17] |
Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39,1021-1032.
DOI URL |
[ 金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39,1021-1032.]
DOI |
|
[18] |
Loranger J, Shipley B (2010). Interspecific covariation between stomatal density and other functional leaf traits in a local flora. Botany, 88,30-38.
DOI URL |
[19] | Luo DD, Wang CK, Jin Y (2019). Stomatal regulation of plants in response to drought stress. Chinese Journal of Applied Ecology, 30,4333-4343. |
[ 罗丹丹, 王传宽, 金鹰 (2019). 植物应对干旱胁迫的气孔调节. 应用生态学报, 30,4333-4343.] | |
[20] |
Mencuccini M, Minunno F, Salmon Y, Martínez-Vilalta J, Hölttä T (2015). Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytologist, 208,396-409.
DOI URL |
[21] | Pan YP, Chen YP (2014). Recent advances in leaf hydraulic traits. Chinese Journal of Ecology, 33,2834-2841. |
[ 潘莹萍, 陈亚鹏 (2014). 叶片水力性状研究进展. 生态学杂志, 33,2834-2841.] | |
[22] | Ren Y, Lu Q, Wu B, Li YH, Xin ZM, Yao B (2014). Response of leaf of Nitraria tangutorum Bobr stomata characteristics to artificial simulation of rainfall . Acta Ecologica Sinica, 34,6101-6106. |
[ 任昱, 卢琦, 吴波, 李永华, 辛智鸣, 姚斌 (2014). 白刺叶片气孔特征对人工模拟降雨的响应. 生态学报, 34,6101-6106.] | |
[23] |
Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198,983-1000.
DOI URL |
[24] |
Song HQ, Ni MY, Zhu SD (2020). Hydraulic and photosynthetic characteristics differ between co-generic tree and Liana species: a case study of Millettia and Gnetum in tropical forest. Chinese Journal of Plant Ecology, 44,192-204.
DOI URL |
[ 宋慧清, 倪鸣源, 朱师丹 (2020). 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例. 植物生态学报, 44,192-204.]
DOI |
|
[25] | Song LL, Fan JW, Wu SH (2011). Research advances on changes of leaf traits along an altitude gradient. Progress in Geography, 30,1431-1439. |
[ 宋璐璐, 樊江文, 吴绍洪 (2011). 植物叶片性状沿海拔梯度变化研究进展. 地理科学进展, 30,1431-1439.]
DOI |
|
[26] | Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, MacKay DS, Wang YJ, Love DM (2017). Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell & Environment, 40,816-830. |
[27] | Wang BX, Zeng YH, Wang DY, Zhao R, Xu X (2010). Responses of leaf stomata to environmental stresses in distribution and physiological characteristics. Agricultural Research in the Arid Areas, 28,122-126. |
[ 王碧霞, 曾永海, 王大勇, 赵蓉, 胥晓 (2010). 叶片气孔分布及生理特征对环境胁迫的响应. 干旱地区农业研究, 28,122-126.] | |
[28] | Wang HZ, Han L, Xu YL, Niu JL (2015). Model analysis of the stomatal conductance response to light in Populus pruinosa at different temperatures in the Taklimakan desert . Ecology and Environmental Sciences, 24,741-748. |
[ 王海珍, 韩路, 徐雅丽, 牛建龙 (2015). 不同温度下灰胡杨叶片气孔导度对光强响应的模型分析. 生态环境学报, 24,741-748.] | |
[29] | Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2016). Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain. Acta Ecologica Sinica, 36,2175-2184. |
[ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2016). 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例. 生态学报, 36,2175-2184.] | |
[30] | Wen JW, Chen HX, Teng YP, Zhang SX, Wang RL (2018). Variation of leaf stomatal traits in Quercus species along the altitudinal gradient in Taibai Mountain, China . Acta Ecologica Sinica, 38,6712-6721. |
[ 温婧雯, 陈昊轩, 滕一平, 张硕新, 王瑞丽 (2018). 太白山栎属树种气孔特征沿海拔梯度的变化规律. 生态学报, 38,6712-6721.] | |
[31] | Wu BJ, Liu YJ, Jiang CD, Shi L (2015). Effects of stomatal development on leaf temperature during leaf expansion. Plant Physiology Journal, 51,119-126. |
[ 吴冰洁, 刘玉军, 姜闯道, 石雷 (2015). 叶片生长进程中气孔发育对叶温调节的影响. 植物生理学报, 51,119-126.] | |
[32] | Wang XF, Li RY, Li XZ, Ma FJ, Sun BN, Wang JY, Wang YK (2014). Variations in leaf characteristics of three species of angiosperms with changing of altitude in Qilian Mountains and their inland high-altitude pattern. Science China: Earth Sciences(Chinese version), 44,706-714. |
[ 王学芳, 李瑞云, 李孝泽, 马福军, 孙柏年, 吴靖宇, 汪有奎 (2014). 祁连山3种被子植物叶特征随海拔变化及其内陆高海拔模式. 中国科学: 地球科学(中文版), 44,706-714.] | |
[33] | Xia ZH, Chen YN, Zhu CG, Zhou YY, Chen XL (2018). Stomatal change in leaves of population euphratica under drought stress. Arid Zone Research, 35,1111-1117. |
[ 夏振华, 陈亚宁, 朱成刚, 周莹莹, 陈晓林 (2018). 干旱胁迫环境下的胡杨叶片气孔变化. 干旱区研究, 35,1111-1117.] | |
[34] |
Xiong H, Ma CE, Li L, Zeng H, Guo DL (2014). Stomatal characteristics of ferns and angiosperms and their responses to changing light intensity at different habitats. Chinese Journal of Plant Ecology, 38,868-877.
DOI URL |
[ 熊慧, 马承恩, 李乐, 曾辉, 郭大立 (2014). 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应. 植物生态学报, 38,868-877.]
DOI |
|
[35] |
Xu ZZ, Zhou GS (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59,3317-3325.
DOI URL |
[36] | Yang KT, Chen GP, Li G, Yu XY, Zhang K, Tang D, Zhang WX, Guo YJ (2020). Trade-off among leaf traits of typical greening tree species in Lanzhou. Chinese Journal of Ecology, 39,1518-1526. |
[ 杨克彤, 陈国鹏, 李广, 俞筱押, 张凯, 汤东, 张文祥, 郭英杰 (2020). 兰州市典型绿化树种叶性状间的权衡关系. 生态学杂志, 39,1518-1526.] | |
[37] | Yang ZQ, Tan W, Liu ZX, Chen YQ (2015). Effect of soil water stress on stomatal characters of greenhouse tomato leaves. Chinese Journal of Ecology, 34,1234-1240. |
[ 杨再强, 谭文, 刘朝霞, 陈艳秋 (2015). 土壤水分胁迫对设施番茄叶片气孔特性的影响. 生态学杂志, 34,1234-1240.] | |
[38] | Zhang DC, Zhu YH, Li SZ (2018). Variation in stomatal characteristics of eight plant species along a soil moisture gradient in alpine meadow of the Dongda Mountains in southeast Tibet. Acta Prataculturae Sinica, 27,36-46. |
[ 张大才, 朱玉怀, 李双智 (2018). 东达山高寒草甸8种植物气孔特征沿土壤水分梯度的变化. 草业学报, 27,36-46.] | |
[39] |
Zhang SB, Sun M, Cao KF, Hu H, Zhang JL (2014). Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity. PLOS ONE, 9,e84682. DOI: 10.1371/journal.pone.0084682.
DOI URL |
[40] | Zhang Y, Yang SJ, Sun M, Cao KF (2014). Stomatal traits are evolutionarily associated with vein density in basal angiosperms. Plant Science Journal, 32,320-328. |
[ 张亚, 杨石建, 孙梅, 曹坤芳 (2014). 基部被子植物气孔性状与叶脉密度的关联进化. 植物科学学报, 32,320-328.] | |
[41] | Zhu YH, Kang HZ, Liu CJ (2011). Affecting factors of plant stomatal traits variability and relevant investigation methods. Chinese Journal of Applied Ecology, 22,250-256. |
[ 朱燕华, 康宏樟, 刘春江 (2011). 植物叶片气孔性状变异的影响因素及研究方法. 应用生态学报, 22,250-256.] |
[1] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[2] | 张雪, 韩凤朋, 肖波, 沈思铭. 黄土高原生物结皮对地表粗糙度和灌草植物种子二次扩散的影响[J]. 植物生态学报, 2023, 47(12): 1668-1683. |
[3] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[4] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[5] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[6] | 项伟, 黄冬柳, 朱师丹. 热带亚热带26种蕨类植物的吸收根解剖特征[J]. 植物生态学报, 2022, 46(5): 593-601. |
[7] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[8] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[9] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[10] | 王春成, 张云玲, 马松梅, 黄刚, 张丹, 闫涵. 中国扁桃亚属四种野生扁桃的系统发育与物种分化[J]. 植物生态学报, 2021, 45(9): 987-995. |
[11] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[12] | 乔鲜果, 郭柯, 赵利清, 王孜, 刘长成. 中国长芒草群系的群落特征[J]. 植物生态学报, 2020, 44(9): 986-994. |
[13] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[14] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[15] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19