植物生态学报 ›› 2023, Vol. 47 ›› Issue (11): 1585-1599.DOI: 10.17521/cjpe.2022.0244
张潇1, 武娟娟1, 贾国栋1,2,*(), 雷自然1, 张龙齐1, 刘锐1, 吕相融1, 代远萌1
收稿日期:
2022-06-10
接受日期:
2022-12-03
出版日期:
2023-11-20
发布日期:
2023-12-22
通讯作者:
贾国栋(基金资助:
ZHANG Xiao1, WU Juan-Juan1, JIA Guo-Dong1,2,*(), LEI Zi-Ran1, ZHANG Long-Qi1, LIU Rui1, LÜ Xiang-Rong1, DAI Yuan-Meng1
Received:
2022-06-10
Accepted:
2022-12-03
Online:
2023-11-20
Published:
2023-12-22
Contact:
JIA Guo-Dong(Supported by:
摘要:
北方土石山区因年内降水不均, 常出现季节性干旱。探究降水对侧柏(Platycladus orientalis)液流特征与水分来源的影响, 对构建稳定生态系统具有重要意义。该研究以北京山区侧柏人工林为研究对象, 利用热扩散式边材液流探针技术(TDP)和氢氧同位素示踪技术对不同控水处理的侧柏进行观测, 同步监测气象、土壤水分含量等环境因子。结果表明: (1)侧柏液流量呈现二倍降水与自然降水>一半降水>无降水。(2)降水增加土壤相对有效含水率(REW), 进而提高侧柏液流对环境因子的响应程度, 侧柏液流主要受饱和水汽压差(VPD)的影响, 太阳辐射(Rs)与风速(WS)影响程度较低。(3)侧柏水分来源特征随降水梯度呈规律性变化, 随土壤含水量升高, 其水分来源逐步向浅层土壤转变。对比降水前后, 除无降水区内侧柏水分来源无明显变化外, 其他处理区侧柏均在降水后增加了对0-40 cm土壤水的利用比例, 当降水后自然降水区与二倍降水区的土壤处于相对含水量较高时期, 这种变化更为明显。综上所述, 侧柏根据降水和土壤水分的变化调整液流运动和吸水深度, 这种自适应特性有利于其度过极端干旱胁迫和生存。
张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响. 植物生态学报, 2023, 47(11): 1585-1599. DOI: 10.17521/cjpe.2022.0244
ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis. Chinese Journal of Plant Ecology, 2023, 47(11): 1585-1599. DOI: 10.17521/cjpe.2022.0244
图1 北京山区侧柏人工林降水控制实验装置示意图。EB, 二倍降水; WU, 无降水; YB, 一半降水; ZR, 自然降水。
Fig. 1 Diagram of precipitation control experiment of Platycladus orientalis plantation in Beijing mountain area. EB, double precipitation; WU, no precipitation; YB, half of the precipitation; ZR, natural precipitation.
处理 Treatment | 样树编号 Sample tree No. | 胸径 DBH (cm) | 边材面积 Sapwood area (cm2) | 树高 Tree height (m) |
---|---|---|---|---|
WU | 1-3 | 13.38 ± 0.47 | 197.27 ± 14.54 | 16.08 ± 0.63 |
YB | 4-6 | 13.33 ± 0.26 | 195.36 ± 8.05 | 16.95 ± 1.78 |
ZR | 7-9 | 13.30 ± 0.36 | 194.48 ± 11.04 | 15.36 ± 0.61 |
EB | 10-12 | 13.39 ± 0.50 | 197.56 ± 15.13 | 17.25 ± 0.79 |
表1 北京山区侧柏液流测定样木信息(平均值±标准误)
Table 1 Trees of Platycladus orientalis for sap flow measurements in the rocky mountainous area of Beijing (mean ± SE)
处理 Treatment | 样树编号 Sample tree No. | 胸径 DBH (cm) | 边材面积 Sapwood area (cm2) | 树高 Tree height (m) |
---|---|---|---|---|
WU | 1-3 | 13.38 ± 0.47 | 197.27 ± 14.54 | 16.08 ± 0.63 |
YB | 4-6 | 13.33 ± 0.26 | 195.36 ± 8.05 | 16.95 ± 1.78 |
ZR | 7-9 | 13.30 ± 0.36 | 194.48 ± 11.04 | 15.36 ± 0.61 |
EB | 10-12 | 13.39 ± 0.50 | 197.56 ± 15.13 | 17.25 ± 0.79 |
图2 北京山区侧柏人工林观测期间土壤含水量与气象因子逐日变化。
Fig. 2 Daily variation of soil water content and meteorological factors during observation of Platycladus orientalis plantation in the rocky mountainous area of Beijing.
图3 四种降水水平下侧柏每日液流量与降水量的日变化。A, 无降水。B, 一半降水。C, 自然降水。D, 二倍降水。
Fig. 3 Diurnal variation of daily sap flow and precipitation of Platycladus orientalis under four precipitation treatments. A, No precipitation. B, Half of the precipitation. C, Natural precipitation. D, Double precipitation.
图4 观测期间4种处理下侧柏液流密度与环境因子日变化。
Fig. 4 Daily changes of sap flow density of Platycladus orientalis and environmental factors of the four treatments during the observation period.
图5 观测期间6次降水事件前后不同处理下侧柏的液流量(平均值±标准误)。A, 8月9日。B, 8月14日。C, 8月19日。D, 9月4日。E, 9月14日。F, 9月19日。不同大写字母表示同一处理降水前后差异显著, 不同小写字母表示不同处理降水前或降水后的差异显著(p < 0.05)。EB, 二倍降水; WU, 无降水; YB, 一半降水; ZR, 自然降水。
Fig. 5 Sap flow (Q) of Platycladus orientalis under different treatments before and after 6 precipitation events during the observation period (mean ± SE). A, 9 August. B, 14 August. C, 19 August. D, 4 September. E, 14 September. F, 19 September. Different uppercase letters indicate significant difference before and after precipitation in the same treatment, and different lowercase letters indicate significant difference before or after precipitation in different treatments (p < 0.05). EB, double precipitation; WU, no precipitation; YB, half of the precipitation; ZR, natural precipitation.
图6 三场降水前后北京山区土壤含水量变化(平均值±标准误)。A, 9月14日。B, 8月19日。C, 9月19日。YH, 降水后; YQ, 降水前。SWC-H, 土壤水分相对较高时期(REW ≥ 0.4); SWC-L, 土壤水分相对较低时期(REW < 0.4)。EB, 二倍降水; WU, 无降水; YB, 一半降水; ZR, 自然降水。
Fig. 6 Changes of soil water content before and after three precipitation events in Beijing mountain area (mean ± SE). A, 14 September. B, 19 August. C, 19 September. YH, after precipitation; YQ, before precipitation. SWC-H, period of relatively high soil moisture (REW ≥ 0.4); SWC-L, period of relatively low soil moisture (REW < 0.4). EB, double precipitation; WU, no precipitation; YB, half of the precipitation; ZR, natural precipitation.
图7 三场降水前后4种控水处理下环境因子对侧柏液流密度的残差贡献率。A, 9月14日。B, 8月19日。C, 9月19日。Rs, 太阳辐射; VPD, 饱和水汽压差; WS, 风速。YH, 降水后; YQ, 降水前。EB, 二倍降水; WU, 无降水; YB, 一半降水; ZR, 自然降水。
Fig. 7 Residual contribution rate of environmental factors to flow density of Platycladus orientalis under four water control treatments before and after three precipitationl event. A, 14 September. B, 19 August. C, 19 September. Rs, solar radiation; VPD, vapor pressure deficit; WS, wind speed. YH, after precipitation; YQ, before precipitation. EB, double precipitation; WU, no precipitation; YB, half of the precipitation; ZR, natural precipitation.
图8 9月4日降水前后不同水分来源对侧柏利用水分的贡献率。EB, 二倍降水; WU, 无降水; YB, 一半降水; ZR, 自然降水。REW, 土壤相对有效含水率; YH, 降水后; YQ, 降水前。
Fig. 8 Contribution rate of different water sources to Platycladus orientalis before and after precipitation on September 4. EB, double precipitation; WU, no precipitation; YB, half of the precipitation; ZR, natural precipitation. REW, relative effective water content of soil; YH, after precipitation; YQ, before precipitation.
[1] |
Barbeta A, Jones SP, Clavé L, Wingate L, Gimeno TE, Fréjaville B, Wohl S, Ogée J (2019). Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest. Hydrology and Earth System Sciences, 23, 2129-2146.
DOI |
[2] |
Besson CK, Lobo-do-Vale R, Rodrigues ML, Almeida P, Herd A, Grant OM, David TS, Schmidt M, Otieno D, Keenan TF, Gouveia C, Mériaux C, Chaves M, Pereira JS (2014). Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agricultural and Forest Meteorology, 184, 230-242.
DOI URL |
[3] |
Bosch DD, Marshall LK, Teskey R (2014). Forest transpiration from sap flux density measurements in a Southeastern Coastal Plain riparian buffer system. Agricultural and Forest Meteorology, 187, 72-82.
DOI URL |
[4] |
Brinkmann N, Eugster W, Zweifel R, Buchmann N, Kahmen A (2016). Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiology, 36, 1508-1519.
PMID |
[5] |
Chen DY, Wang YK, Liu SY, Wei XG, Wang X (2014). Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China. Agricultural Water Management, 136, 23-33.
DOI URL |
[6] | Gao C, Yang XB, Lu SW, Li SN, Chen B, Pan QH, Ma CD (2014). Strategies on water utilization of poplar plantation ecosystem in Beijing sandy area. Journal of Northeast Forestry University, 42(1), 80-85. |
[高琛, 杨新兵, 鲁绍伟, 李少宁, 陈波, 潘青华, 马成东 (2014). 北京沙地杨树人工林生态系统水分利用策略. 东北林业大学学报, 42(1), 80-85.] | |
[7] |
Gessler A, Bächli L, Rouholahnejad Freund E, Treydte K, Schaub M, Haeni M, Weiler M, Seeger S, Marshall J, Hug C, Zweifel R, Hagedorn F, Rigling A, Saurer M, Meusburger K (2022). Drought reduces water uptake in beech from the drying topsoil, but no compensatory uptake occurs from deeper soil layers. New Phytologist, 233, 194-206.
DOI URL |
[8] |
Gessler A, Keitel C, Nahm M, Rennenberg H (2004). Water shortage affects the water and nitrogen balance in Central European beech forests. Plant Biology, 6, 289-298.
PMID |
[9] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI PMID |
[10] |
Granier A, Biron P, Lemoine D (2000). Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 100, 291-308.
DOI URL |
[11] |
Guerrieri, Rossella (2019). Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proceedings of the National Academy of Sciences of the United States of America, 116, 16909-16914.
DOI PMID |
[12] | Han L, He J, Qi TY, Tian J, Sun ZJ, Zhan XL (2018). Response and simulation of canopy stomatal conductance of Platycladus orientalis to environmental factors in Hedong sandy region of Ningxia. Journal of Ecology, 37, 2862-2868. |
[韩磊, 何俊, 齐拓野, 田佳, 孙兆军, 展秀丽 (2018). 宁夏河东沙区侧柏冠层气孔导度对环境因子的响应及其模拟. 生态学杂志, 37, 2862-2868.] | |
[13] | He QY (2020). Transpiration Characteristics of a Black Locust Plantation in Response to Rairfall Reduction in the Sub-humid Region of Loess Plateau, China. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. |
[何秋月 (2020).黄土高原半湿润区刺槐人工林蒸腾耗水特征对降雨减少的响应. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[14] |
Jackson PC, Cavelier J, Goldstein G, Meinzer FC, Holbrook NM (1995). Partitioning of water resources among plants of a lowland tropical forest. Oecologia, 101, 197-203.
DOI PMID |
[15] | Jiang T, Zheng WG, Yu XX, Jia GD, Ba Heti ZE, Zhang H, Wang YS, Wang YP, Ding BB (2022). Leaf water absorption of Platycladus orientalis under drought stress in Beijing. Acta Ecologica Sinica, 42, 1429-1440. |
[蒋涛, 郑文革, 余新晓, 贾国栋, 孜尔蝶·巴合提, 张欢, 王渝淞, 王玥璞, 丁兵兵 (2022). 北京山区干旱胁迫下侧柏叶片水分吸收策略. 生态学报, 42, 1429-1440.] | |
[16] |
Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS, Ewers BE, Peters DP, Young DR, Shaver GR, Pendall E, Cleary MB (2008). Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615-623.
DOI URL |
[17] | Kong Z, Chen SN, Lv J, Chen LX, Zhang ZQ (2020). Characteristics of Populus euramericana sap flow over day and night and its influencing factors. Scientia Silvae Sinicae, 56(3), 8-20. |
[孔喆, 陈胜楠, 律江, 陈立欣, 张志强 (2020). 欧美杨单株液流昼夜组成及其影响因素分析. 林业科学, 56(3), 8-20.] | |
[18] | Leen JB, Berman ESF, Liebson L, Gupta M (2012). Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes. Review of Scientific Instruments, 83, 044305. DOI: 10.1063/1.4704843. |
[19] |
Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R (2009). Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change Biology, 15, 2163-2175.
DOI URL |
[20] | Liu WN (2019). Studies of Platycladus orientalis Stomatal Conductance and Its Regulation on Canopy Transpiration in Beijing Mountainous Area. Master degree dissertation, Beijing Forestry University, Beijing. |
[刘文娜 (2019). 北京山区侧柏林冠层气孔导度及其对冠层蒸腾调控的研究. 硕士学位论文, 北京林业大学, 北京.] | |
[21] | Liu ZQ (2019). Water Migration Process and Utilization Mechanism of Typical Trees in North China. PhD dissertation, Beijing Forestry University, Beijing. |
[刘自强 (2019). 华北地区典型林木水分运移过程与利用机制研究. 博士学位论文, 北京林业大学, 北京.] | |
[22] | Liu ZQ, Yu XX, Jia GD, Li HZ, Lu WW, Hou GR (2018). Response to precipitation in water sources for Platycladus orientalis in Beijing mountain area. Scientia Silvae Sinicae, 54(7), 16-23. |
[刘自强, 余新晓, 贾国栋, 李瀚之, 路伟伟, 侯贵荣 (2018). 北京山区侧柏利用水分来源对降水的响应. 林业科学, 54(7), 16-23.] | |
[23] | Lu SB, Chen YM, Tang YK, Wu X, Wen J (2017). Sap flux density in response to rainfall pulses for Pinus tabuliformis and Hippophae rhamnoides from mixed plantation in hilly Loess Plateau. Chinese Journal of Applied Ecology, 28, 3469-3478. |
[卢森堡, 陈云明, 唐亚坤, 吴旭, 温杰 (2017). 黄土丘陵区混交林中油松和沙棘树干液流对降雨脉冲的响应. 应用生态学报, 28, 3469-3478.]
DOI |
|
[24] |
Luo C, Zha TG, Zhu MX, Zhu ZJ, Wang ZY, Liu WN (2016). Influences of shallow groundwater on sap flow of riparian poplar plantations in Northern China. Chinese Journal of Applied Ecology, 27, 1401-1407.
DOI |
[罗超, 查同刚, 朱梦洵, 朱志俊, 王子尧, 刘文娜 (2016). 浅层地下水对华北地区河岸杨树林树干液流的影响. 应用生态学报, 27, 1401-1407.]
DOI |
|
[25] | Lyu JL, He QY, Yan MJ, Li GQ, Du S (2018). Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China. Chinese Journal of Applied Ecology, 29, 725-731. |
[吕金林, 何秋月, 闫美杰, 李国庆, 杜盛 (2018). 黄土丘陵区辽东栎树干液流特征对边材面积和土壤水分的响应. 应用生态学报, 29, 725-731.]
DOI |
|
[26] | Ma CK, Luo Y, Shao MG, Li XD, Sun L, Jia XX (2017). Environmental controls on sap flow in black locust forest in Loess Plateau, China. Scientific Reports, 7, 13160. DOI: 10.10381/s41598-017-13532-8. |
[27] |
Martín-Gómez P, Barbeta A, Voltas J, Peñuelas J, Dennis K, Palacio S, Dawson TE, Ferrio JP (2015). Isotope-ratio infrared spectroscopy: a reliable tool for the investigation of plant-water sources. New Phytologist, 207, 914-927.
DOI PMID |
[28] |
Meinzer FC, Andrade JL, Goldstein G, Cavelier J (1999). Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia, 121, 293-301.
DOI PMID |
[29] | Pan D, Bi HX, Cirenquxi, Wang LL, Gao LB, Xu HS, Bao B (2013). Relationship between environmental factors and water consumption regularity of typical forest vegetation in loess region of western Shanxi Province, Northern China. Journal of Beijing Forestry University, 35(4), 16-20. |
[潘迪, 毕华兴, 次仁曲西, 王莉莉, 高路博, 许华森, 鲍彪 (2013). 晋西黄土区典型森林植被耗水规律与环境因子关系研究. 北京林业大学学报, 35(4), 16-20.] | |
[30] |
Porporato A, Daly E, Rodriguez-Iturbe I (2004). Soil water balance and ecosystem response to climate change. The American Naturalist, 164, 625-632.
PMID |
[31] |
Schultz NM, Griffis TJ, Lee XH, Baker JM (2011). Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water. Rapid Communications in Mass Spectrometry, 25, 3360-3368.
DOI URL |
[32] |
Schwendenmann L, Pendall E, Sanchez-Bragado R, Kunert N, Hölscher D (2015). Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology, 8, 1-12.
DOI URL |
[33] | Stock BC, Jackson AL, Ward EJ, Parnell AC, Semmens BX (2018). Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ, 6, e5096. DOI: 10.7287/peerj.preprints.26884. |
[34] |
Wang X, Jia GD, Deng WP, Liu ZQ, Liu ZH, Qiu GF, Li WL (2021). Long-term water use characteristics and patterns of typical tree species in seasonal drought regions. Chinese Journal of Applied Ecology, 32, 1943-1950.
DOI |
[王欣, 贾国栋, 邓文平, 刘自强, 刘子赫, 邱贵福, 李文立 (2021). 季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 32, 1943-1950.]
DOI |
|
[35] | Wang Y, Wang J (2012). Research progress of plant sap flow. Anhui Agricultural Science Bulletin, 18, 49-50. |
[汪滢, 王健 (2012). 植物液流研究进展. 安徽农学通报, 18, 49-50.] | |
[36] | Wang Y, Wei JS, Liu BB, Zhou M (2021). Effect of environmental factors on characteristics of sap flow of Betula platyphylla in southern Daxing’an Mountains. Journal of Northeast Forestry University, 49(2), 11-17. |
[王媛, 魏江生, 刘兵兵, 周梅 (2021). 环境因子对大兴安岭南段白桦树干液流变化特征的影响. 东北林业大学学报, 49(2), 11-17.] | |
[37] | Wang Y, Wei JS, Zhou M, Zhao PW, Liu BB (2020). Response of sap flow of Betula platyphylla to soil moisture in southern Greater Xing’an Mountains. Research of Soil and Water Conservation, 27(4), 128-133. |
[王媛, 魏江生, 周梅, 赵鹏武, 刘兵兵 (2020). 大兴安岭南段白桦树干液流对土壤水分的响应. 水土保持研究, 27(4), 128-133.] | |
[38] | Wightman M, Martin T, Gonzalez-Benecke C, Jokela E, Cropper Jr. W, Ward E (2016). Loblolly pine productivity and water relations in response to throughfall reduction and fertilizer application on a poorly drained site in northern Florida. Forests, 7, 214. DOI: 10.3390/f7100214. |
[39] | Williams DG, Ehleringer JR (2000). Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70, 517-537. |
[40] |
Wu X, Chen YM, Tang YK (2015). Sap flow characteristics and its responses to precipitation in Robinia pseudoacacia and Platycladus orientalis plantations. Chinese Journal of Plant Ecology, 39, 1176-1187.
DOI URL |
[吴旭, 陈云明, 唐亚坤 (2015). 黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应. 植物生态学报, 39, 1176-1187.]
DOI |
|
[41] |
Wullschleger SD, Hanson PJ (2006). Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: evidence from a long-term field manipulation study. Global Change Biology, 12, 97-109.
DOI URL |
[42] | Xia YH, Zhang XP, Dai JJ, Wang R, Luo ZD (2021). Response of stem sap flow of Cinnamomum camphora to precipitation under different environments in the subtropical monsoon region. Research of Soil and Water Conservation, 28(6), 144-152. |
[夏银华, 章新平, 戴军杰, 王锐, 罗紫东 (2021). 亚热带季风区樟树树干液流对降水的响应. 水土保持研究, 28(6), 144-152.] | |
[43] | Zhang HL, Ding YL, Chen HS, Wang KL, Nie YP (2018). Responses of sap flow to natural rainfall and continuous drought of tree species growing on bedrock outcrops. Chinese Journal of Applied Ecology, 29, 1117-1124. |
[张慧玲, 丁亚丽, 陈洪松, 王克林, 聂云鹏 (2018). 出露基岩生境典型植物树干液流对自然降水和连续干旱的响应特征. 应用生态学报, 29, 1117-1124.]
DOI |
|
[44] |
Zhang JG, He QY, Shi WY, Otsuki K, Yamanaka N, Du S (2015). Radial variations in xylem sap flow and their effect on whole-tree water use estimates. Hydrological Processes, 29, 4993-5002.
DOI URL |
[45] | Zhang L, Sun PS, Liu SR (2009). A review on water use responses of tree/forest stand to environmental changes by using sapflow techniques. Acta Ecologica Sinica, 29, 5600-5610. |
[张雷, 孙鹏森, 刘世荣 (2009). 树干液流对环境变化响应研究进展. 生态学报, 29, 5600-5610.] | |
[46] | Zhao N, Meng P, He YB, Lou YH, Yu XX (2017). Response of water sources in Platycladus orientalis and Vitex negundo var. heterophylla system to precipitation events in mountain area of Beijing, China. Chinese Journal of Applied Ecology, 28, 2155-2163. |
[赵娜, 孟平, 何雅冰, 娄源海, 余新晓 (2017). 北京山区侧柏-荆条系统水分来源对降雨事件的响应. 应用生态学报, 28, 2155-2163.]
DOI |
|
[47] |
Zhao W, Liu B (2010). The response of sap flow in shrubs to rainfall pulses in the desert region of China. Agricultural and Forest Meteorology, 150, 1297-1306.
DOI URL |
[48] |
Zhao WQ, Xi BY, Liu JQ, Liu Y, Zou SY, Song WY, Chen LX (2021). Transpiration process and environmental response of poplar plantation under different irrigation conditions. Chinese Journal of Plant Ecology, 45, 370-382.
DOI URL |
[赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣 (2021). 不同灌溉条件下杨树人工林蒸腾过程及环境响应. 植物生态学报, 45, 370-382.] | |
[49] | Zheng PF, Yu XX, Jia GD, Liu ZQ, Zhang YE, Zhu XH (2019). Water use efficiency and its influencing factors of Platycladus orientalis plantation in Beijing mountains area, China. Chinese Journal of Applied Ecology, 30, 727-734. |
[郑鹏飞, 余新晓, 贾国栋, 刘自强, 张永娥, 朱栩辉 (2019). 北京山区侧柏人工林水分利用效率及其影响因素. 应用生态学报, 30, 727-734.]
DOI |
|
[50] |
Zhou H, Zhao WZ, Zheng XJ, Li SJ (2015). Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat. Journal of Plant Research, 128, 613-622.
DOI PMID |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[3] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[4] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[5] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[6] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[7] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[8] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[9] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[10] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[11] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[12] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[13] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
[14] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[15] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19