Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (7): 722-730.DOI: 10.3724/SP.J.1258.2011.00722
Previous Articles Next Articles
LUO Lu1,2,3, SHEN Guo-Zhen1,3, XIE Zong-Qiang1,3,*(), ZHOU Li-Guang4
Published:
2011-08-18
Contact:
XIE Zong-Qiang
LUO Lu, SHEN Guo-Zhen, XIE Zong-Qiang, ZHOU Li-Guang. Components of soil respiration and its temperature sensitivity in four types of forests along an elevational gradient in Shennongjia, China[J]. Chin J Plant Ecol, 2011, 35(7): 722-730.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00722
森林类型 Forest type | 位置 Location | 海拔 Elevation (m) | 坡度 Slope | 降水量 Precipitation (mm) | 平均胸径 Mean diameter at breast hight (cm) | 建群种 Constructive species | 土壤类型 Soil type |
---|---|---|---|---|---|---|---|
常绿阔叶林 Evergreen broad- leaved forest | 31°21′ N 110°30′ E | 780 | 41.5° | 850 | 7.90 | 川钓樟 Lindera strychnifolia var. hemsleyana 宜昌楠 Phoebe zhennan yichang 青冈 Cyclobalanopsis glauca | 山地黄壤 Mountain yellow earth |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad- leaved forest | 31°19′ N 110°29′ E | 1 670 | 21.0° | 1 200 | 13.34 | 米心水青冈 Fagus engleriana 青冈 Cyclobalanopsis glauca | 山地黄棕壤 Mountain yellow brown earth |
落叶阔叶林 Deciduous broad- leaved forest | 31°18′ N 110°30′ E | 1 970 | 19.0° | 1 050 | 17.59 | 锐齿槲栎 Quercus aliena var. acutiserrata 四照花 Cronus japonica var. chinensis | 山地黄棕壤 Mountain yellow- brown earth |
亚高山针叶林 Sub-alpine coniferous forest | 31°28′ N 110°18′ E | 2 570 | 22.0° | 1 100 | 24.82 | 巴山冷杉 Abies fargesii 杜鹃 Rhododendron simsii | 山地暗棕壤 Mountain dark yellow earth |
Table 1 Site characteristics of four typical forests along an elevational gradient in Shennongjia, Hubei
森林类型 Forest type | 位置 Location | 海拔 Elevation (m) | 坡度 Slope | 降水量 Precipitation (mm) | 平均胸径 Mean diameter at breast hight (cm) | 建群种 Constructive species | 土壤类型 Soil type |
---|---|---|---|---|---|---|---|
常绿阔叶林 Evergreen broad- leaved forest | 31°21′ N 110°30′ E | 780 | 41.5° | 850 | 7.90 | 川钓樟 Lindera strychnifolia var. hemsleyana 宜昌楠 Phoebe zhennan yichang 青冈 Cyclobalanopsis glauca | 山地黄壤 Mountain yellow earth |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad- leaved forest | 31°19′ N 110°29′ E | 1 670 | 21.0° | 1 200 | 13.34 | 米心水青冈 Fagus engleriana 青冈 Cyclobalanopsis glauca | 山地黄棕壤 Mountain yellow brown earth |
落叶阔叶林 Deciduous broad- leaved forest | 31°18′ N 110°30′ E | 1 970 | 19.0° | 1 050 | 17.59 | 锐齿槲栎 Quercus aliena var. acutiserrata 四照花 Cronus japonica var. chinensis | 山地黄棕壤 Mountain yellow- brown earth |
亚高山针叶林 Sub-alpine coniferous forest | 31°28′ N 110°18′ E | 2 570 | 22.0° | 1 100 | 24.82 | 巴山冷杉 Abies fargesii 杜鹃 Rhododendron simsii | 山地暗棕壤 Mountain dark yellow earth |
Fig. 1 Seasonal changes of soil respiration (RS) and heterotrophic respiration (RH) (mean ± SE, n = 4). CF, sub-alpine coniferous forest; DBF, deciduous broad-leaved forest; EBF, evergreen broad-leaved forest; MF, mixed evergreen and deciduous broad-leaved forest.
森林类型 Forest type | 原状土壤呼吸RS (μmol CO2·m-2·s-1) | 挖壕沟土壤呼吸Rtren (μmol CO2·m-2·s-1) | 异养呼吸RH (μmol CO2·m-2·s-1) | 自养呼吸RA (μmol CO2·m-2·s-1) |
---|---|---|---|---|
常绿阔叶林 Evergreen broad-leaved forest | 1.627 ± 0.068a | 1.308 ± 0.042a | 1.125a | 0.502 |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 1.789 ± 0.059a | 1.324 ± 0.073a | 1.116a | 0.673 |
落叶阔叶林 Deciduous broad-leaved forest | 1.738 ± 0.134a | 1.429 ± 0.098a | 1.170a | 0.568 |
亚高山针叶林 Sub-alpine coniferous forest | 1.355 ± 0.059b | 0.885 ± 0.017b | 0.798b | 0.557 |
Table 2 Soil respiration of the control (RS) and trenched plots (Rtren), autotrophic respiration (RA) and heterotrophic respiration (RH) of four typical forests along an elevational gradient in Shennongjia, Hubei (mean ± SE)
森林类型 Forest type | 原状土壤呼吸RS (μmol CO2·m-2·s-1) | 挖壕沟土壤呼吸Rtren (μmol CO2·m-2·s-1) | 异养呼吸RH (μmol CO2·m-2·s-1) | 自养呼吸RA (μmol CO2·m-2·s-1) |
---|---|---|---|---|
常绿阔叶林 Evergreen broad-leaved forest | 1.627 ± 0.068a | 1.308 ± 0.042a | 1.125a | 0.502 |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 1.789 ± 0.059a | 1.324 ± 0.073a | 1.116a | 0.673 |
落叶阔叶林 Deciduous broad-leaved forest | 1.738 ± 0.134a | 1.429 ± 0.098a | 1.170a | 0.568 |
亚高山针叶林 Sub-alpine coniferous forest | 1.355 ± 0.059b | 0.885 ± 0.017b | 0.798b | 0.557 |
Fig. 2 Seasonal changes of autotrophic respiration. CF, sub-alpine coniferous forest; DBF, deciduous broad-leaved forest; EBF, evergreen broad-leaved forest; MF, mixed evergreen and deciduous broad-leaved forest.
常绿阔叶林 Evergreen broad- leaved forest | 常绿落叶阔叶混交林 Mixed evergreen and de- ciduous broad-leaved forest | 落叶阔叶林 Deciduous broad-leaved forest | 亚高山针叶林 Sub-alpine coniferous forest | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ST | SWC | ST | SVC | ST | SVC | ST | SVC | ||||
原状土壤呼吸 Soil respiration of untrenched plot | 0.956* | -0.205 | 0.987* | -0.059 | 0.955* | -0.097 | 0.949* | 0.346 | |||
挖壕沟土壤呼吸 Soil respiration of trenched plot | 0.927* | -0.145 | 0.984* | -0.073 | 0.962* | 0.242 | 0.915* | 0.405 | |||
异养呼吸 Heterotrophic respiration | 0.959* | -0.074 | 0.990* | -0.039 | 0.964* | 0.358 | 0.909* | 0.395 | |||
自养呼吸 Autotrophic respiration | 0.800* | -0.024 | 0.953* | -0.038 | 0.906* | 0.507 | 0.923* | 0.427 |
Table 3 Relationship between soil respiration and its components with soil temperature (ST) and soil water content (SWC) (r)
常绿阔叶林 Evergreen broad- leaved forest | 常绿落叶阔叶混交林 Mixed evergreen and de- ciduous broad-leaved forest | 落叶阔叶林 Deciduous broad-leaved forest | 亚高山针叶林 Sub-alpine coniferous forest | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ST | SWC | ST | SVC | ST | SVC | ST | SVC | ||||
原状土壤呼吸 Soil respiration of untrenched plot | 0.956* | -0.205 | 0.987* | -0.059 | 0.955* | -0.097 | 0.949* | 0.346 | |||
挖壕沟土壤呼吸 Soil respiration of trenched plot | 0.927* | -0.145 | 0.984* | -0.073 | 0.962* | 0.242 | 0.915* | 0.405 | |||
异养呼吸 Heterotrophic respiration | 0.959* | -0.074 | 0.990* | -0.039 | 0.964* | 0.358 | 0.909* | 0.395 | |||
自养呼吸 Autotrophic respiration | 0.800* | -0.024 | 0.953* | -0.038 | 0.906* | 0.507 | 0.923* | 0.427 |
Fig. 3 Fitting curve of soil respiration with soil temperature. CF, sub-alpine coniferous forest; DBF, deciduous broad-leaved forest; EBF, evergreen broad-leaved forest; MF, mixed evergreen and deciduous broad-leaved forest.
森林类型 Forest type | 土壤温度 ST (℃) | 土壤含水量 SWC (%) | |||
---|---|---|---|---|---|
原状 Control | 挖壕沟Trenched | 原状 Control | 挖壕沟Trenched | ||
常绿阔叶林 Evergreen broad-leaved forest | 13.23a | 13.74a* | 22.74ab | 23.25bc | |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 9.56b | 9.67b | 24.49a | 25.53a | |
落叶阔叶林 Deciduous broad-leaved forest | 9.01b | 9.01b | 24.62a | 24.85ab | |
亚高山针叶林 Sub-alpine coniferous forest | 5.37c | 5.23c | 21.45b | 22.36c |
Table 4 Mean soil temperature (ST) and soil water content (SWC) at control and trenched plots of four typical forests along an elevational gradient in Shennongjia, Hubei
森林类型 Forest type | 土壤温度 ST (℃) | 土壤含水量 SWC (%) | |||
---|---|---|---|---|---|
原状 Control | 挖壕沟Trenched | 原状 Control | 挖壕沟Trenched | ||
常绿阔叶林 Evergreen broad-leaved forest | 13.23a | 13.74a* | 22.74ab | 23.25bc | |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 9.56b | 9.67b | 24.49a | 25.53a | |
落叶阔叶林 Deciduous broad-leaved forest | 9.01b | 9.01b | 24.62a | 24.85ab | |
亚高山针叶林 Sub-alpine coniferous forest | 5.37c | 5.23c | 21.45b | 22.36c |
森林类型 Forest type | 根系生物量 Root biomass (g·m-2) | 分解速率 Root decay rate (k) (year-1) | R2 | |||||
---|---|---|---|---|---|---|---|---|
d < 2 mm | d ≥ 2 mm | d < 2 mm | d ≥ 2 mm | d < 2 mm | d ≥ 2 mm | |||
常绿阔叶林 Evergreen broad-leaved forest | 334.8 | 1 670.8 | 0.859 | 0.367 | 0.93 | 0.89 | ||
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 516.9 | 2 205.0 | 0.808 | 0.288 | 0.98 | 0.83 | ||
落叶阔叶林 Deciduous broad-leaved forest | 711.0 | 2 151.0 | 0.858 | 0.371 | 0.85 | 0.91 | ||
亚高山针叶林 Sub-alpine coniferous forest | 151.8 | 1 501.4 | 0.704 | 0.204 | 0.96 | 0.88 |
Table 5 Root biomass and root decay rate (k) in different root diameter classes in four typical forests along an elevational gradient in Shennongjia, Hubei
森林类型 Forest type | 根系生物量 Root biomass (g·m-2) | 分解速率 Root decay rate (k) (year-1) | R2 | |||||
---|---|---|---|---|---|---|---|---|
d < 2 mm | d ≥ 2 mm | d < 2 mm | d ≥ 2 mm | d < 2 mm | d ≥ 2 mm | |||
常绿阔叶林 Evergreen broad-leaved forest | 334.8 | 1 670.8 | 0.859 | 0.367 | 0.93 | 0.89 | ||
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 516.9 | 2 205.0 | 0.808 | 0.288 | 0.98 | 0.83 | ||
落叶阔叶林 Deciduous broad-leaved forest | 711.0 | 2 151.0 | 0.858 | 0.371 | 0.85 | 0.91 | ||
亚高山针叶林 Sub-alpine coniferous forest | 151.8 | 1 501.4 | 0.704 | 0.204 | 0.96 | 0.88 |
[1] |
Bahn M, Rodeghiero M, Anderson-Dunn M, Dore S, Gimeno G, Drösler M, Williams M, Ammann C, Berninger F, Flechard C, Jones S, Balzarolo M, Kumar S, Newesely C, Priwitzer T, Raschi A, Siegwolf R, Susiluoto S, Tenhunen J, Wohlfahrt G, Cernusca A (2008). Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11, 1352-1367.
URL PMID |
[2] | Bhupinderpal S, Nordgren A, Löfvenius MO, Högberg MN, Mellander PE, Högberg P (2003). Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant, Cell & Environment, 26, 1287-1296. |
[3] |
Bond-Lamberty B, Wang CK, Gower ST (2004). A global relationship between the heterotrophic and autotrophic components of soil respiration. Global Change Biology, 10, 1756-1766.
DOI URL |
[4] |
Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572.
DOI URL |
[5] |
Campbell JL, Law BE (2005). Forest soil respiration across three climatically distinct chronosequences in Oregon. Biogeochemistry, 73, 109-125.
DOI URL |
[6] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
DOI URL PMID |
[7] |
Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227.
DOI URL |
[8] |
Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JEM (2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69.
DOI URL |
[9] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
DOI URL PMID |
[10] |
Davidson EA, Janssens IA, Luo Y (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Chang Biology, 12, 154-164.
DOI URL |
[11] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[12] |
Epron D, Le Dantec V, Dufrence E, Granier A (2001). Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiology, 21, 145-152.
URL PMID |
[13] |
Gaumont-Guay D, Black TA, McCaughey H, Barr AG, Krishnan P, Jassal RS, Nesic Z (2009). Soil CO2 efflux in contrasting boreal deciduous and coniferous stands and its contribution to the ecosystem carbon balance. Global Change Biology, 15, 1302-1319.
DOI URL |
[14] |
Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146.
DOI URL |
[15] |
Hartley IP, Heinemeyer A, Evans SP, Ineson P (2007). The effect of soil warming on bulk soil vs. rhizosphere respiration. Global Change Biology, 13, 2654-2667.
DOI URL |
[16] |
Hibbard KA, Law BE, Reichstein M, Sulzman J (2005). An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry, 73, 29-70.
DOI URL |
[17] | Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792. |
[18] |
Högberg P, Read DJ (2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology & Evolution, 21, 548-554.
DOI URL PMID |
[19] | Janssens IA, Pilegaard K (2003). Large seasonal changes in Q(10) of soil respiration in a beech forest. Global Change Biology, 9, 911-918. |
[20] | Kang SY, Doh S, Lee D, Jin V, Kimball JS (2003). Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 9, 1427-1437. |
[21] | Kirschbaum MUF (2000). Will changes in soil organic carbon act a positive or negative feedback on global warming? Biogeochemistry, 48, 21-51. |
[22] | Kuzyakov Y, Cheng W (2001). Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology & Biochemistry, 33, 1915-1925. |
[23] | Landsberg JJ, Gower ST (1997). Applications of Physiological Ecology to Forest Management. Academic Press, San Diego, USA. |
[24] | Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY, Robitaille G (2003). Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Canadian Journal of Forest Research, 33, 1744-1753. |
[25] | Lee MS, Nakane K, Nakatsubo T, Koizumi H (2003). Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperature deciduous forest. Plant and Soil, 255, 311-318. |
[26] | Lee NY, Koo JW, Noh JN, Kim J, Son Y (2010). Autotrophic and heterotrophic respiration in needle fir and Quercus- dominated stands in a cool-temperate forest, central Korea. Journal of Plant Research, 123, 485-495. |
[27] | Lee X, Wu HJ, Sigler J, Oishi C, Siccama T (2004). Rapid and transient response of soil respiration to rain. Global Change Biology, 10, 1017-1026. |
[28] | Liu WX, Zhang Z, Wan SQ (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 15, 184-195. |
[29] | Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. |
[30] | Luo YQ, Zhou XH (2006). Soil Respiration and the Environment. Academic/Elsevier, San Diego, USA. |
[31] | O’Connell KEB, Gower ST, Norman JM (2003). Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems, 6, 248-260. |
[32] | Raich JW, Potter CS (1995). Global pattern of carbon dioxide emission from soil. Global Biochemical Cycles, 9, 23-36. |
[33] | Raich JW, Potter CS, Bhagawati D (2002). Interannual variability in global soil respiration, 1980-1984. Global Change Biology, 8, 800-812. |
[34] |
Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99.
DOI URL |
[35] | Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90. |
[36] | Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini J, Banza J, Casals P, Cheng YF, Grunzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D (2003). Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17, 1104, doi: 10.1029/2003GB002035. |
[37] | Rey A, Pegoraro E, Tedeschi V, Parri LD, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology, 8, 851-866. |
[38] | Rodeghiero M, Cescatti A (2005). Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology, 11, 1024-1041. |
[39] | Ryan MG, Law BE (2005). Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73, 3-27. |
[40] | Saiz G, Byrne KA, Butterbach-Bahl K, Kiese R, Blujdea V, Farrell EP (2006). Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology, 12, 1007-1020. |
[41] | Schlesinger WH (1990). Evidence from chronosequence studies for a low carbon-storage potential of soil. Nature, 348, 232-234. |
[42] | Scott-Denton LE, Rosenstiel N, Monson PK (2006). Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Global Change Biology, 12, 205-216. |
[43] |
Tans PP, Fung IY, Takahashi T (1990). Observational constraints on the global atmospheric CO2 budget. Science, 247, 1431-1438.
DOI URL PMID |
[44] | Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424. |
[45] | Wang C, Yang J (2007). Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Global Change Biology, 13, 123-131. |
[46] | Wang CK, Gower ST, Wang YH, Zhao HX, Yan P, Bond-Lamberty BP (2001). The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biology, 7, 719-730. |
[47] | Wang CK, Bond-Lamberty B, Gower ST (2002). Soil surface CO2 flux in a boreal black spruce fire chronosequence. Journal of Geophysical Research-Atmospheres, 107, 8224, doi: 10.1029/2001JD000861. |
[48] | Wang CK, Yang JY, Zhang QZ (2006). Soil respiration in six temperate forests in China. Global Change Biology, 12, 2013-2114. |
[49] | Zheng ZM, Yu GR, Fu YL, Wang YS, Sun XM, Wang YH (2009). Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: a trans-China based study. Soil Biology & Biochemistry, 41, 1531-1540. |
[50] | Zhou XH, Wan SQ, Luo YQ (2007). Source components and inter-annual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775. |
[51] | Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana AJQ (2010). Temporal variation and climate dependence of soil respiration and its components along a 3000 m altitudinal tropical forest gradient. Global Biogeochemical Cycles, 24, GB4012, doi: 10.1029/2010GB003787 |
[1] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[2] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[3] | LI Xue, DONG Jie, HAN Guang-Xuan, ZHANG Qi-Qi, XIE Bao-Hua, LI Pei-Guang, ZHAO Ming-Liang, CHEN Ke-Long, SONG Wei-Min. Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta [J]. Chin J Plant Ecol, 2023, 47(3): 434-446. |
[4] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[5] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[6] | CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19. |
[7] | Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland [J]. Chin J Plant Ecol, 2017, 41(9): 938-952. |
[8] | Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest [J]. Chin J Plant Ecol, 2017, 41(11): 1177-1189. |
[9] | Qiang ZHANG, Jia-Xiang LI, Zong-Qiang XIE. Effects of nitrogen addition on soil respiration of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plant Ecol, 2017, 41(1): 95-104. |
[10] | YAO Hui,HU Xue-Yang,ZHU Jiang-Ling,ZHU Jian-Xiao,JI Cheng-Jun,FANG Jing-Yun. Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing [J]. Chin J Plan Ecolo, 2015, 39(9): 849-856. |
[11] | XU Ming-Shan,HUANG Hai-Xia,SHI Qing-Ru,YANG Xiao-Dong,ZHOU Liu-Li,ZHAO Yan-Tao,ZHANG Qing-Qing,YAN En-Rong. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province [J]. Chin J Plan Ecolo, 2015, 39(9): 857-866. |
[12] | WANG Ming, LIU Xing-Tu, ZHANG Ji-Tao, LI Xiu-Jun, WANG Guo-Dong, LU Xin-Rui, LI Xiao-Yu. Spatio-temporal variations of soil respiration in five typical plant communities in the meadow steppe of the western Songnen Plain, China [J]. Chin J Plant Ecol, 2014, 38(4): 396-404. |
[13] | LI Yue, LIU Ying-Hui, SHEN Wei-Jun, XU Xia, TIAN Yu-Qiang. Responses of soil heterotrophic respiration to changes in soil temperature and moisture in a Stipa krylovii grassland in Nei Mongol [J]. Chin J Plant Ecol, 2014, 38(3): 238-248. |
[14] | WU Jun-Jun, YANG Zhi-Jie, LIU Xiao-Fei, XIONG De-Cheng, LIN Wei-Sheng, CHEN Chao-Qi, WANG Xiao-Hong. Analysis of soil respiration and components in Castanopsis carlesiiand Cunninghamia lanceolataplantations [J]. Chin J Plant Ecol, 2014, 38(1): 45-53. |
[15] | YANG Xiu-Yun, HAN You-Zhi, WU Xiao-Gang. Response of fine root biomass to changes in spatial heterogeneity of soil moisture and nitrogen in Larix principis-rupprechtii forest [J]. Chin J Plant Ecol, 2012, 36(9): 965-972. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 4861
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 4801
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn