Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (10): 950-961.DOI: 10.17521/cjpe.2015.0092
• Orginal Article • Previous Articles Next Articles
LIU Shuang-E1,2, LI Yi-Yong1,2, FANG Xiong1,2, HUANG Wen-Juan1, LONG Feng-Ling1,2, LIU Ju-Xiu1,*()
Online:
2015-10-01
Published:
2015-10-24
Contact:
Ju-Xiu LIU
About author:
# Co-first authors
LIU Shuang-E,LI Yi-Yong,FANG Xiong,HUANG Wen-Juan,LONG Feng-Ling,LIU Ju-Xiu. Effects of the level and regime of nitrogen addition on seedling growth of four major tree species in subtropical China[J]. Chin J Plan Ecolo, 2015, 39(10): 950-961.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0092
土壤深度 Soil depth (cm) | pH值 pH value | 有效磷 Available phosphorus (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|
0-20 | 3.99 ± 0.096 | 0.84 ± 0.072 | 17.39 ± 1.34 | 6.01 ± 0.69 | 22.72 ± 1.20 |
Table 1 Background values of soil physicochemical properties at beginning of the experiment (mean ± SD, n = 12)
土壤深度 Soil depth (cm) | pH值 pH value | 有效磷 Available phosphorus (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|
0-20 | 3.99 ± 0.096 | 0.84 ± 0.072 | 17.39 ± 1.34 | 6.01 ± 0.69 | 22.72 ± 1.20 |
物种 Species | 对照 Ambient N addition | 中氮 Medium N addition | 高氮 High N addition | |||||
---|---|---|---|---|---|---|---|---|
土壤施氮 SN | 冠层施氮 CN | 土壤施氮 SN | 冠层施氮 CN | 土壤施氮 SN | 冠层施氮 CN | |||
海南红豆 Ormosia pinnata | 17.11 ± 1.68 | 14.07 ± 1.40 | 18.28 ± 1.08 | 15.74 ± 1.99 | 17.06 ± 1.25 | 16.67 ± 1.01 | ||
马占相思 Acacia mangium | 17.63 ± 2.17 | 13.87 ± 2.48 | 19.69 ± 0.39a | 13.83 ± 2.74b | 16.65 ± 1.12 | 14.33 ± 3.51 | ||
木荷 Schima superba | 18.14 ± 1.13 | 16.73 ± 1.61 | 19.18 ± 0.80a | 16.03 ± 1.68b | 17.22 ± 0.81 | 15.70 ± 0.60 | ||
马尾松 Pinus massoniana | 17.39 ± 2.49 | 15.52 ± 1.72 | 18.03 ± 1.18 | 17.28 ± 0.33 | 17.60 ± 0.74 | 15.85 ± 0.93 |
Supplement I Soil water content (%) under two N addition regimes (mean ± SD)
物种 Species | 对照 Ambient N addition | 中氮 Medium N addition | 高氮 High N addition | |||||
---|---|---|---|---|---|---|---|---|
土壤施氮 SN | 冠层施氮 CN | 土壤施氮 SN | 冠层施氮 CN | 土壤施氮 SN | 冠层施氮 CN | |||
海南红豆 Ormosia pinnata | 17.11 ± 1.68 | 14.07 ± 1.40 | 18.28 ± 1.08 | 15.74 ± 1.99 | 17.06 ± 1.25 | 16.67 ± 1.01 | ||
马占相思 Acacia mangium | 17.63 ± 2.17 | 13.87 ± 2.48 | 19.69 ± 0.39a | 13.83 ± 2.74b | 16.65 ± 1.12 | 14.33 ± 3.51 | ||
木荷 Schima superba | 18.14 ± 1.13 | 16.73 ± 1.61 | 19.18 ± 0.80a | 16.03 ± 1.68b | 17.22 ± 0.81 | 15.70 ± 0.60 | ||
马尾松 Pinus massoniana | 17.39 ± 2.49 | 15.52 ± 1.72 | 18.03 ± 1.18 | 17.28 ± 0.33 | 17.60 ± 0.74 | 15.85 ± 0.93 |
主要因素及相互作用 Main factors and interactions | 基径 Basal diameter | 株高 Tree height | 生物量 Biomass | 土壤pH Soil pH | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F and p values | d.f. | F and p values | d.f. | F and p values | d.f. | F and p values | d.f. | ||||
处理水平 Level | 6.721 0.002 | 2 | 4.013 0.021 | 2 | 3.608 0.039 | 2 | 70.555 <0.001 | 2 | |||
施氮方式 Regime | 0.906 0.344 | 1 | 0.544 0.463 | 1 | 6.421 0.017 | 2 | 107.545 <0.001 | 1 | |||
物种 Species | 48.661 <0.001 | 3 | 386.887 <0.001 | 3 | 122.901 <0.001 | 3 | 31.299 <0.001 | 3 | |||
水平×施氮方式 Level × regime | 19.591 <0.001 | 2 | 1.799 0.171 | 2 | 12.949 <0.001 | 2 | 7.314 0.002 | 3 | |||
水平×物种 Level × species | 5.293 <0.001 | 6 | 2.088 0.062 | 6 | 12.266 <0.001 | 6 | 1.681 0.146 | 6 | |||
施氮方式×物种 Regime × species | 7.207 <0.001 | 3 | 8.017 <0.001 | 3 | 11.592 <0.001 | 3 | 3.458 0.023 | 3 | |||
水平×施氮方式×物种 Level × regime × species | 9.227 <0.001 | 6 | 1.673 0.136 | 6 | 10.981 <0.001 | 6 | 5.313 <0.001 | 6 | |||
误差 Error | 95 | 95 | 103 | 48 |
Table 2 Effects of N addition level and regime on seedling growth in four major tree species (three-way ANOVA)
主要因素及相互作用 Main factors and interactions | 基径 Basal diameter | 株高 Tree height | 生物量 Biomass | 土壤pH Soil pH | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F and p values | d.f. | F and p values | d.f. | F and p values | d.f. | F and p values | d.f. | ||||
处理水平 Level | 6.721 0.002 | 2 | 4.013 0.021 | 2 | 3.608 0.039 | 2 | 70.555 <0.001 | 2 | |||
施氮方式 Regime | 0.906 0.344 | 1 | 0.544 0.463 | 1 | 6.421 0.017 | 2 | 107.545 <0.001 | 1 | |||
物种 Species | 48.661 <0.001 | 3 | 386.887 <0.001 | 3 | 122.901 <0.001 | 3 | 31.299 <0.001 | 3 | |||
水平×施氮方式 Level × regime | 19.591 <0.001 | 2 | 1.799 0.171 | 2 | 12.949 <0.001 | 2 | 7.314 0.002 | 3 | |||
水平×物种 Level × species | 5.293 <0.001 | 6 | 2.088 0.062 | 6 | 12.266 <0.001 | 6 | 1.681 0.146 | 6 | |||
施氮方式×物种 Regime × species | 7.207 <0.001 | 3 | 8.017 <0.001 | 3 | 11.592 <0.001 | 3 | 3.458 0.023 | 3 | |||
水平×施氮方式×物种 Level × regime × species | 9.227 <0.001 | 6 | 1.673 0.136 | 6 | 10.981 <0.001 | 6 | 5.313 <0.001 | 6 | |||
误差 Error | 95 | 95 | 103 | 48 |
Fig. 1 Effects of N addition level and regime on tree basal diameter in four tree species (mean ± SD). Different lowercase letters (a, b) and capital letters (A, B) above the error bars indicate significant differences among N addition levels in soil and on canopy, respectively, in each species (p < 0.05); * above the error bars indicate significant difference between two N addition regimes (Duncan multiple range test; * p < 0.05, ** p < 0.01). CK, ambient N addition; HN, high N addition; MN, medium N addition. CN, N addition on canopy; SN, N addition in soil. AM, Acacia mangium; OP, Ormosia pinnata; PM, Pinus massoniana; SS, Schima superba.
Fig. 2 Effects of N addition level and regime on tree height in four tree species (mean ± SD). Different lowercase letters (a, b) and capital letters (A, B) above the error bars indicate significant differences among N addition levels in soil and on canopy, respectively, in each species (p < 0.05); * above the error bars indicate significant differences between two N addition regimes (Duncan multiple range test; * p < 0.05, ** p < 0.01). CK, ambient N addition; HN, high N addition; MN, medium N addition. CN, N addition on canopy; SN, N addition in soil. AM, Acacia mangium; OP, Ormosia pinnata; PM, Pinus massoniana; SS, Schima superba.
Fig. 3 Effects of N addition level and regime on biomass in four tree species (mean ± SD). Different lowercase letters (a, b) and capital letters (A, B) above the error bars indicate significant differences among N addition levels in soil and on canopy, respectively, in each species (p < 0.05); * above the error bars indicate significant differences between two N addition regimes (Duncan multiple range test; * p < 0.05, ** p < 0.01). CK, ambient N addition; HN, high N addition; MN, medium N addition. CN, N addition on canopy; SN, N addition in soil. AM, Acacia mangium; OP, Ormosia pinnata; PM, Pinus massoniana; SS, Schima superba.
Fig. 4 Effects of N addition level and regime on biomass accumulation in leaves, stem and coarse-roots and fine-roots (mean ± SD). Different lowercase letters (a, b) and capital letters (A, B) above the error bars indicate significant differences among N addition levels in soil and on canopy, respectively, in each species (p < 0.05); * above the error bars indicate significant differences between two N addition regimes (Duncan multiple range test; * p < 0.05, ** p < 0.01). CK, ambient N addition; HN, high N addition; MN, medium N addition. CN, N addition on canopy; SN, N addition in soil. AM, Acacia mangium; OP, Ormosia pinnata; PM, Pinus massoniana; SS, Schima superba.
物种 Species | 冠层施N N addition on canopy | 土壤施N N addition in soil | |||||
---|---|---|---|---|---|---|---|
CK | MN | HN | CK | MN | HN | ||
海南红豆 Ormosia pinnata | 0.275 ± 0.029 | 0.307 ± 0.003 | 0.315 ± 0.067 | 0.453 ± 0.103a | 0.332 ± 0.018ab | 0.253 ± 0.009b | |
马占相思 Acacia mangium | 0.251 ± 0.071 | 0.222 ± 0.039 | 0.317 ± 0.059 | 0.262 ± 0.059 | 0.235 ± 0.005 | 0.391 ± 0.175 | |
木荷 Schima superba | 0.514 ± 0.128 | 0.489 ± 0.021 | 0.754 ± 0.241 | 0.575 ± 0.055 | 0.544 ± 0.124 | 0.608 ± 0.008 | |
马尾松 Pinus massoniana | 0.336 ± 0.119 | 0.277 ± 0.021 | 0.223 ± 0.070 | 0.170 ± 0.035b | 0.299 ± 0.075ab | 0.343 ± 0.003a |
Table 3 Root-shoot ratios under different nitrogen (N) treatments (mean ± SD)
物种 Species | 冠层施N N addition on canopy | 土壤施N N addition in soil | |||||
---|---|---|---|---|---|---|---|
CK | MN | HN | CK | MN | HN | ||
海南红豆 Ormosia pinnata | 0.275 ± 0.029 | 0.307 ± 0.003 | 0.315 ± 0.067 | 0.453 ± 0.103a | 0.332 ± 0.018ab | 0.253 ± 0.009b | |
马占相思 Acacia mangium | 0.251 ± 0.071 | 0.222 ± 0.039 | 0.317 ± 0.059 | 0.262 ± 0.059 | 0.235 ± 0.005 | 0.391 ± 0.175 | |
木荷 Schima superba | 0.514 ± 0.128 | 0.489 ± 0.021 | 0.754 ± 0.241 | 0.575 ± 0.055 | 0.544 ± 0.124 | 0.608 ± 0.008 | |
马尾松 Pinus massoniana | 0.336 ± 0.119 | 0.277 ± 0.021 | 0.223 ± 0.070 | 0.170 ± 0.035b | 0.299 ± 0.075ab | 0.343 ± 0.003a |
土壤施N N addition in soil | 冠层施N N addition on canopy | |||||||
---|---|---|---|---|---|---|---|---|
CK | MN | HN | CK | MN | HN | |||
豆科与非豆科相比 Legumes versus non-legumes | 基径 Base diameter | 18.450 0.001 | 36.161 <0.001 | 5.461 0.038 | 5.747 0.03 | 15.424 0.002 | 3.38 0.087 | |
株高 Tree height | 46.039 <0.001 | 32.859 <0.001 | 8.979 0.011 | 16.937 0.001 | 9.629 0.008 | 9.111 0.009 | ||
生物量 Biomass | 9.126 0.029 | 21.174 0.006 | 30.829 0.002 | 0.932 0.379 | 11.908 0.026 | 6.263 0.046 | ||
阔叶与针叶相比 Broadleaf versus conifers | 基径 Basal diameter | 0.679 0.338 | 1.262 0.276 | 24.355 <0.001 | 23.799 <0.001 | 32.911 <0.001 | 1.297 0.269 | |
株高 Tree height | 2.516 0.129 | 6.264 0.022 | 7.065 0.018 | 11.620 0.003 | 17.643 <0.001 | 10.767 0.004 | ||
生物量 Biomass | 0.110 0.750 | 10.299 0.013 | 8.170 0.017 | 16.323 0.004 | 33.324 0.001 | 1.11 0.323 |
Table 4 Differential responses of seedling growth to N addition regime and level among different tree seedlings (Duncan multiple range test)
土壤施N N addition in soil | 冠层施N N addition on canopy | |||||||
---|---|---|---|---|---|---|---|---|
CK | MN | HN | CK | MN | HN | |||
豆科与非豆科相比 Legumes versus non-legumes | 基径 Base diameter | 18.450 0.001 | 36.161 <0.001 | 5.461 0.038 | 5.747 0.03 | 15.424 0.002 | 3.38 0.087 | |
株高 Tree height | 46.039 <0.001 | 32.859 <0.001 | 8.979 0.011 | 16.937 0.001 | 9.629 0.008 | 9.111 0.009 | ||
生物量 Biomass | 9.126 0.029 | 21.174 0.006 | 30.829 0.002 | 0.932 0.379 | 11.908 0.026 | 6.263 0.046 | ||
阔叶与针叶相比 Broadleaf versus conifers | 基径 Basal diameter | 0.679 0.338 | 1.262 0.276 | 24.355 <0.001 | 23.799 <0.001 | 32.911 <0.001 | 1.297 0.269 | |
株高 Tree height | 2.516 0.129 | 6.264 0.022 | 7.065 0.018 | 11.620 0.003 | 17.643 <0.001 | 10.767 0.004 | ||
生物量 Biomass | 0.110 0.750 | 10.299 0.013 | 8.170 0.017 | 16.323 0.004 | 33.324 0.001 | 1.11 0.323 |
Fig. 5 Effects of N addition level and regime on soil pH value (mean ± SD). Different lowercase letters (a, b) and capital letters (A, B) above the error bars indicate significant differences among N addition levels in soil and on canopy, respectively, in each species (p < 0.05); * above the error bars indicate significant differences between two N addition regimes (Duncan multiple range test; * p < 0.05, ** p < 0.01). CK, ambient N addition; HN, high N addition; MN, medium N addition. CN, N addition on canopy; SN, N addition in soil. AM, Acacia mangium; OP, Ormosia pinnata; PM, Pinus massoniana; SS, Schima superba.
[1] | Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48, 921-934. |
[2] | Bauer GA, Bazzaz FA, Minocha R, Long S, Magill A, Aber J, Berntson GM (2004). Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. Forest Ecology and Management, 196, 173-186. |
[3] | Bobbink R, Hornung M, Roelofs JGM (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717-738. |
[4] | Boyce RL, Friedland AJ, Chamberlain CP, Poulson SR (1996). Direct canopy nitrogen uptake from 15N-labeled wet deposition by mature red spruce. Canadian Journal of Forest Research, 26, 1539-1547. |
[5] | Duan HL, Liu JX, Deng Q, Chen XM, Zhang DQ (2009). Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: A mesocosm study. Chinese Journal of Plant Ecology, 33, 570-579. (in Chinese with English abstract) |
[段洪浪, 刘菊秀, 邓琦, 陈小梅, 张德强 (2009). CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响. 植物生态学报, 33, 570-579.] | |
[6] | Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006). Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature, 439, 68-71. |
[7] | Flüiickiger W, Braun S (1998). Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environmental Pollution, 102, 69-76. |
[8] | Galloway JN, Cowling EB (2002). Reactive nitrogen and the world: 200 years of change. AMBIO, 31, 64-71. |
[9] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153-226. |
[10] | George E, Seith B (1998). Long-term effects of a high nitrogen supply to soil on the growth and nutritional status of young Norway spruces trees. Environmental Pollution, 102, 301-306. |
[11] | Gruber N, Galloway JN (2008). An earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296. |
[12] | Gundersen P, Emmett BA, Kjøgnaas OJ, Koopmans CJ, Tietema A (1998). Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data. Forest Ecology and Management, 101, 37-55. |
[13] | Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006). Leaching of nitrate from temperate forests effects of air pollution and forest management. Environmental Reviews, 14, 1-57. |
[14] | Houlton BZ, Wang YP, Vitousek PM, Field CB (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327-330. |
[15] | Li DJ, Mo JM, Fang YT, Cai XA, Xu GL (2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica, 24, 876-882. (in Chinese with English abstract) |
[李德军, 莫江明, 方运霆, 蔡锡安, 徐国良 (2004). 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 24, 876-882.] | |
[16] | Li DJ, Mo JM, Fang YT, Li ZA (2005). Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Phytoecologica Sinica, 29, 543-549. (in Chinese with English abstract) |
[李德军, 莫江明, 方运霆, 李志安 (2005). 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响. 植物生态学报, 29, 543-549.] | |
[17] | Li DJ, Mo JM, Fang YT, Peng SL, Gundersen P (2003). Impact of nitrogen deposition on forest plants. Acta Ecologica Sinica, 23, 1891-1900. (in Chinese with English abstract) |
[李德军, 莫江明, 方运霆, 彭少麟, Gundersen P (2003). 氮沉降对森林植物的影响. 生态学报, 23, 1891-1900.] | |
[18] | Liu JX, Zhang DQ, Zhou GY, Faivre-Vuillin BF, Deng Q, Wang CL (2008). CO2 enrichment increases nutrient leaching from model forest ecosystems in subtropical China. Biogeosciences, 5, 1783-1795. |
[19] | Liu JX, Zhou GY, Xu ZH, Duan HL, Li YL, Zhang DQ (2011). Photosynthesis acclimation, leaf nitrogen concentration, and growth of four tree species over 3 years in response to elevated carbon dioxide and nitrogen treatment in subtropical China. Journal of Soils and Sediments, 11, 1155-1164. |
[20] | Lu XK, Mao QG, Gilliam FS, Luo YQ, Mo JM (2014). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 3790-3801. |
[21] | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7-28. |
[22] | Matson PA, McdDowell WH, Townsend AR, Vitousek PM (1999). The globalization of N deposition: Ecosystem consequences in tropical environments. Biogeochemistry, 46, 67-83. |
[23] | Mo JM, Brown S, Xue JH, Fang YT, Li ZA (2006). Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant and Soil, 282, 135-151. |
[24] | Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403-412. |
[25] | Morris DM, Gordon AG, Gordon AM (2003). Patterns of canopy interception and throughfall along a topographic sequence for black spruce dominated forest ecosystems in northwestern Ontario. Canadian Journal of Forest Research, 33, 1046-1060. |
[26] | Nakaji T, Fukami M, Dokiya Y, Izuta T (2001). Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 15, 453-461. |
[27] | Nohrstedt HÖ (2001). Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences. Scandinavian Journal of Forest Research, 16, 555-573. |
[28] | Pang L, Zhang Y, Zhou ZC, Feng ZP, Chu DY (2014). Effects of simulated nitrogen deposition on Masson pine root exudates of different pedigrees and phosphorus efficiency in Pinus massoniana families under low phosphorus stress. Chinese Journal of Plant Ecology, 38, 27-35. (in Chinese with English abstract) |
[庞丽, 张一, 周志春, 丰忠平, 储德裕 (2014). 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响. 植物生态学报, 38, 27-35.] | |
[29] | Persson H, Ahlström K, Clemensson-Lindell A (1998). Nitrogen addition and removal at Gårdsjön—effects on fine-root growth and fine-root chemistry. Forest Ecology and Management, 101, 199-206. |
[30] | Ren R, Mi FJ, Bai NB (2000). A chemometrics analysis on the data of precipitation chemistry of China. Journal of Beijing Polytechnic University, 26(2), 90-95. (in Chinese with English abstract) |
[任仁, 米丰杰, 白乃宾 (2000). 中国降水化学数据的化学计量学分析. 北京工业大学学报, 26(2), 90-95.] | |
[31] | Robbink R, Hornung M, Roelofs JGM (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717-738. |
[32] | Sievering H, Femandez I, Lee J, Hom J, Rustad L (2000). Forest canopy uptake of atmospheric nitrogen deposition at eastern U. S. conifer sites: Carbon storage implications. Global Biogeochemical Cycles, 14, 1153-1159. |
[33] | Sievering H, Tomaszewski T, Torizzo J (2007). Canopy uptake of atmospheric N deposition at a conifer forest: Part I― Canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus B, 59, 483-492. |
[34] | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. |
[35] | Tomaszewski T, Boyce RL, Sievering H (2003). Canopy uptake of atmospheric nitrogen and new growth nitrogen requirement at a Colorado subalpine forest. Canadian Journal of Forest Research, 33, 2221-2227. |
[36] | Wilson EJ (1992). Foliar uptake and release of inorganic nitrogen compounds in Pinus sylvestris L. and Picea abies (L.) Karst. New Phytologist, 120, 407-416. |
[37] | Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439. |
[38] | Zhao L, Zhou GY, Zhang DQ, Duan HL, Liu JX (2011). Effects of elevated CO2 concentration and nitrogen deposition on the biomass accumulation and allocation in south subtropical main native tree species and their mixed communities. Chinese Journal of Applied Ecology, 22, 1949- 1954. (in Chinese with English abstract) |
[赵亮, 周国逸, 张德强, 段洪浪, 刘菊秀 (2011). CO2浓度升高和氮沉降对南亚热带主要乡土树种及群落生物量的影响. 应用生态学报, 22, 1949-1954.] | |
[39] | Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX (2002). The Asian nitrogen cycle case study. AMBIO, 31, 79-87. |
[40] | Zhu FF, Yoh M, Gilliam FS, Yoh M, Lu XK, Mo JM (2013). Nutrient limitation in three lowland tropical forests in southern china receiving high nitrogen deposition: Insights from fine root responses to nutrient additions. PLoS ONE, 8, e82661. |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[8] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[9] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[10] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[11] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[12] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[13] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[14] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[15] | LI Bian-Bian, ZHANG Feng-Hua, ZHAO Ya-Guang, SUN Bing-Nan. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus [J]. Chin J Plant Ecol, 2023, 47(1): 101-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn