Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (5): 468-476.DOI: 10.3724/SP.J.1258.2014.00043
Special Issue: 生物多样性
• Research Articles • Previous Articles Next Articles
WANG Xie1,XIANG Cheng-Hua1,2,LI Xian-Wei1,*(),WEN Dong-Ju1
Received:
2014-03-13
Accepted:
2014-04-10
Online:
2014-03-13
Published:
2014-05-13
Contact:
LI Xian-Wei
WANG Xie,XIANG Cheng-Hua,LI Xian-Wei,WEN Dong-Ju. Short-term effects of a winter wildfire on diversity and intensity of soil microbial function in the subalpine grassland of western Sichuan, China[J]. Chin J Plant Ecol, 2014, 38(5): 468-476.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00043
类型编号 Type ID | 处理 Treatment | 坡位 Slope position | 坡向 Slope aspect | 海拔 (m) Elevation | 容重 (g·cm-3)1) Bulk density | 含水量(%)1) Water content | 酸碱度2) pH |
---|---|---|---|---|---|---|---|
B1 | 火烧 Burned | 上 Upper | 东 East | 3 429 | 0.992 | 22.3 | 6.60 |
B2 | 火烧 Burned | 中 Middle | 东 East | 3 454 | 1.055 | 15.1 | 7.28 |
B3 | 火烧 Burned | 下 Lower | 东 East | 3 461 | 1.051 | 15.4 | 7.54 |
B4 | 火烧 Burned | 上 Upper | 西 West | 3 315 | 0.932 | 26.6 | 6.30 |
B5 | 火烧 Burned | 中 Middle | 西 West | 3 243 | 1.058 | 15.6 | 6.71 |
B6 | 火烧 Burned | 下 Lower | 西 West | 3 487 | 0.946 | 16.7 | 7.24 |
U1 | 未火烧 Unburned | 上 Upper | 东 East | 3 409 | 0.993 | 23.4 | 6.44 |
U2 | 未火烧 Unburned | 中 Middle | 东 East | 3 334 | 1.043 | 22.2 | 7.04 |
U3 | 未火烧 Unburned | 下 Lower | 东 East | 3 444 | 0.987 | 19.3 | 7.47 |
U4 | 未火烧 Unburned | 上 Upper | 西 West | 3 424 | 0.929 | 32.4 | 6.36 |
U5 | 未火烧 Unburned | 中 Middle | 西 West | 3 196 | 1.068 | 17.0 | 6.63 |
U6 | 未火烧 Unburned | 下 Lower | 西 West | 3 484 | 1.079 | 18.5 | 7.15 |
Table 1 General information of sampling plots
类型编号 Type ID | 处理 Treatment | 坡位 Slope position | 坡向 Slope aspect | 海拔 (m) Elevation | 容重 (g·cm-3)1) Bulk density | 含水量(%)1) Water content | 酸碱度2) pH |
---|---|---|---|---|---|---|---|
B1 | 火烧 Burned | 上 Upper | 东 East | 3 429 | 0.992 | 22.3 | 6.60 |
B2 | 火烧 Burned | 中 Middle | 东 East | 3 454 | 1.055 | 15.1 | 7.28 |
B3 | 火烧 Burned | 下 Lower | 东 East | 3 461 | 1.051 | 15.4 | 7.54 |
B4 | 火烧 Burned | 上 Upper | 西 West | 3 315 | 0.932 | 26.6 | 6.30 |
B5 | 火烧 Burned | 中 Middle | 西 West | 3 243 | 1.058 | 15.6 | 6.71 |
B6 | 火烧 Burned | 下 Lower | 西 West | 3 487 | 0.946 | 16.7 | 7.24 |
U1 | 未火烧 Unburned | 上 Upper | 东 East | 3 409 | 0.993 | 23.4 | 6.44 |
U2 | 未火烧 Unburned | 中 Middle | 东 East | 3 334 | 1.043 | 22.2 | 7.04 |
U3 | 未火烧 Unburned | 下 Lower | 东 East | 3 444 | 0.987 | 19.3 | 7.47 |
U4 | 未火烧 Unburned | 上 Upper | 西 West | 3 424 | 0.929 | 32.4 | 6.36 |
U5 | 未火烧 Unburned | 中 Middle | 西 West | 3 196 | 1.068 | 17.0 | 6.63 |
U6 | 未火烧 Unburned | 下 Lower | 西 West | 3 484 | 1.079 | 18.5 | 7.15 |
0-5 cm土层 0-5 cm soil layer | 5-10 cm土层 5-10 cm soil layer | 10-20 cm土层 10-20 cm soil layer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
火烧 Burned | 未火烧 Unburned | 火烧 Burned | 未火烧 Unburned | 火烧 Burned | 未火烧 Unburned | |||||
β-葡糖苷酶活性 β-glucosidase activity | 9.12 ± 1.94a | 7.24 ± 2.46b | 4.89 ± 1.19c | 3.81 ± 1.54cd | 2.80 ± 1.20d | 3.16 ± 1.03d | ||||
酸性磷酸酶活性 Acid phosphatase activity | 16.58 ± 7.85a | 13.26 ± 3.81b | 10.93 ± 5.03bc | 10.65 ± 4.52bc | 6.78 ± 2.01d | 8.12 ± 2.98cd | ||||
碱性磷酸酶活性 Alkaline phosphatase activity | 11.20 ± 3.45a | 7.55 ± 3.53b | 6.47 ± 2.12bc | 6.26 ± 3.28bc | 5.20 ± 1.91c | 4.95 ± 2.40c | ||||
脲酶活性 Urease activity | 0.30 ± 0.15a | 0.20 ± 0.09b | 0.17 ± 0.04bc | 0.16 ± 0.09bc | 0.14 ± 0.09bc | 0.11 ± 0.10c | ||||
蔗糖酶活性 Invertase activity | 60.39 ± 16.07a | 50.66 ± 7.53b | 40.77 ± 7.48c | 39.91 ± 7.08c | 30.51 ± 7.76d | 29.83 ± 9.21d | ||||
蛋白酶活性 Proteinase activity | 1.08 ± 0.28a | 0.96 ± 0.24ab | 0.93 ± 0.19bc | 0.81 ± 0.18c | 0.63 ± 0.21d | 0.56 ± 0.05d | ||||
过氧化氢酶活性 Catalase activity | 1.39 ± 0.11a | 1.28 ± 0.10b | 1.14 ± 0.09c | 1.10 ± 0.09c | 1.01 ± 0.07d | 0.92 ± 0.05e | ||||
微生物功能强度 Microbial functional intensity | 1.26 ± 0.60a | 1.21 ± 0.39a | 1.49 ± 0.49a | 1.22 ± 0.49a | 1.31 ± 0.59a | 1.36 ± 0.40a | ||||
微生物功能多样性 Microbial functional diversity | 1.18 ± 0.58a | 1.14 ± 0.06ab | 1.14 ± 0.83ab | 1.10 ± 0.07b | 1.10 ± 0.07b | 1.13 ± 0.11ab |
Table 2 Activities of soil enzymes on burned and unburned sites (mean ± SD)
0-5 cm土层 0-5 cm soil layer | 5-10 cm土层 5-10 cm soil layer | 10-20 cm土层 10-20 cm soil layer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
火烧 Burned | 未火烧 Unburned | 火烧 Burned | 未火烧 Unburned | 火烧 Burned | 未火烧 Unburned | |||||
β-葡糖苷酶活性 β-glucosidase activity | 9.12 ± 1.94a | 7.24 ± 2.46b | 4.89 ± 1.19c | 3.81 ± 1.54cd | 2.80 ± 1.20d | 3.16 ± 1.03d | ||||
酸性磷酸酶活性 Acid phosphatase activity | 16.58 ± 7.85a | 13.26 ± 3.81b | 10.93 ± 5.03bc | 10.65 ± 4.52bc | 6.78 ± 2.01d | 8.12 ± 2.98cd | ||||
碱性磷酸酶活性 Alkaline phosphatase activity | 11.20 ± 3.45a | 7.55 ± 3.53b | 6.47 ± 2.12bc | 6.26 ± 3.28bc | 5.20 ± 1.91c | 4.95 ± 2.40c | ||||
脲酶活性 Urease activity | 0.30 ± 0.15a | 0.20 ± 0.09b | 0.17 ± 0.04bc | 0.16 ± 0.09bc | 0.14 ± 0.09bc | 0.11 ± 0.10c | ||||
蔗糖酶活性 Invertase activity | 60.39 ± 16.07a | 50.66 ± 7.53b | 40.77 ± 7.48c | 39.91 ± 7.08c | 30.51 ± 7.76d | 29.83 ± 9.21d | ||||
蛋白酶活性 Proteinase activity | 1.08 ± 0.28a | 0.96 ± 0.24ab | 0.93 ± 0.19bc | 0.81 ± 0.18c | 0.63 ± 0.21d | 0.56 ± 0.05d | ||||
过氧化氢酶活性 Catalase activity | 1.39 ± 0.11a | 1.28 ± 0.10b | 1.14 ± 0.09c | 1.10 ± 0.09c | 1.01 ± 0.07d | 0.92 ± 0.05e | ||||
微生物功能强度 Microbial functional intensity | 1.26 ± 0.60a | 1.21 ± 0.39a | 1.49 ± 0.49a | 1.22 ± 0.49a | 1.31 ± 0.59a | 1.36 ± 0.40a | ||||
微生物功能多样性 Microbial functional diversity | 1.18 ± 0.58a | 1.14 ± 0.06ab | 1.14 ± 0.83ab | 1.10 ± 0.07b | 1.10 ± 0.07b | 1.13 ± 0.11ab |
β-葡糖苷酶 活性 β-glucosidase activity | 酸性磷 酸酶活性 Acid phosphatase activity | 碱性磷酸酶 活性 Alkaline phosphatase activities | 脲酶活性 Urease activity | 蔗糖酶活性 Invertase activity | 蛋白酶 活性 Proteinase activity | 过氧化氢 酶活性 Catalase activity | 微生物 功能强度 Microbial functional intensity | |
---|---|---|---|---|---|---|---|---|
酸性磷酸酶活性 Acid phosphatase activity | 0.536** | |||||||
碱性磷酸酶活性 Alkaline phosphatase activities | 0.579** | 0.280** | ||||||
脲酶活性 Urease activity | 0.296** | 0.361** | 0.235* | |||||
蔗糖酶活性 Invertase activity | 0.765** | 0.815** | 0.528** | 0.415** | ||||
蛋白酶活性 Proteinase activity | 0.533** | 0.465** | 0.619** | 0.146ns | 0.621** | |||
过氧化氢酶活性 Catalase activity | 0.682** | 0.684** | 0.543** | 0.238* | 0.766** | 0.643** | ||
微生物功能强度 Microbial functional intensity | 0.055ns | -0.434** | 0.495** | 0.017ns | -0.259** | 0.169ns | -0.148ns | |
微生物功能多样性 Microbial functional diversity | 0.236* | -0.009ns | 0.499** | 0.104ns | -0.149 ns | 0.227* | 0.158ns | 0.592** |
Table 3 Correlations among the specific soil enzyme activities and the diversity and intensity of soil microbial function
β-葡糖苷酶 活性 β-glucosidase activity | 酸性磷 酸酶活性 Acid phosphatase activity | 碱性磷酸酶 活性 Alkaline phosphatase activities | 脲酶活性 Urease activity | 蔗糖酶活性 Invertase activity | 蛋白酶 活性 Proteinase activity | 过氧化氢 酶活性 Catalase activity | 微生物 功能强度 Microbial functional intensity | |
---|---|---|---|---|---|---|---|---|
酸性磷酸酶活性 Acid phosphatase activity | 0.536** | |||||||
碱性磷酸酶活性 Alkaline phosphatase activities | 0.579** | 0.280** | ||||||
脲酶活性 Urease activity | 0.296** | 0.361** | 0.235* | |||||
蔗糖酶活性 Invertase activity | 0.765** | 0.815** | 0.528** | 0.415** | ||||
蛋白酶活性 Proteinase activity | 0.533** | 0.465** | 0.619** | 0.146ns | 0.621** | |||
过氧化氢酶活性 Catalase activity | 0.682** | 0.684** | 0.543** | 0.238* | 0.766** | 0.643** | ||
微生物功能强度 Microbial functional intensity | 0.055ns | -0.434** | 0.495** | 0.017ns | -0.259** | 0.169ns | -0.148ns | |
微生物功能多样性 Microbial functional diversity | 0.236* | -0.009ns | 0.499** | 0.104ns | -0.149 ns | 0.227* | 0.158ns | 0.592** |
[1] | Adam G, Duncan H (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry, 33, 943-951. |
[2] | Annals Compiling Committee of Daofu County in Sichuan Province (1997). Daofu County Annals. Sichuan People Press, Chengdu. (in Chinese) |
[ 四川省道孚县志编纂委员会 (1997). 道孚县志. 四川人民出版社, 成都.] | |
[3] | Bandick AK, Dick RP (1999). Field management effects on soil enzyme activities. Soil Biology & Biochemistry, 31, 1471-1479. |
[4] |
Bárcenas-Moreno G, Bååth E (2009). Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biology & Biochemistry, 41, 2517-2526.
DOI URL |
[5] | Beck T (1984). Munich for the Determination of Some Aspects of Soil Fertility. Roman National Society of Soil Science, Bucharest. |
[6] |
Bending GD, Turner MK, Rayns F, Marx MC, Wood M (2004). Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biology & Biochemistry, 36, 1785-1792.
DOI URL |
[7] | Boerner R, Brinkman JA (2003). Fire frequency and soil enzyme activity in southern Ohio oak-hickory forests. Applied Soil Ecology, 23, 137-146. |
[8] | Boerner RE, Decker KL, Sutherland EK (2000). Prescribed burning effects on soil enzyme activity in a southern Ohio hardwood forest: a landscape-scale analysis. Soil Biology & Biochemistry, 32, 899-908. |
[9] | Boerner RE, Giai C, Huang J, Miesel JR (2008). Initial effects of fire and mechanical thinning on soil enzyme activity and nitrogen transformations in eight North American forest ecosystems. Soil Biology & Biochemistry, 40, 3076-3085. |
[10] |
Certini G (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10.
DOI URL PMID |
[11] | D’Ascoli R, Rutigliano FA, de Pascale RA, Gentile A, de Santo AV (2005). Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires. International Journal of Wildland Fire, 14, 355-363. |
[12] | Debano LF, Neary DG, Ffolliott PF (1998). Fire Effects on Ecosystems. John Wiley & Sons, Manhattan, USA. |
[13] | Docherty KM, Balser TC, Bohannan BJ, Gutknecht JL (2012). Soil microbial responses to fire and interacting global change factors in a California annual grassland. Biogeochemistry, 109, 63-83. |
[14] | Eivazi F, Tabatabai MA (1988). Glucosidases and galactos- idases in soils. Soil Biology & Biochemistry, 120, 601-606. |
[15] | Giai C, Boerner REJ (2007). Effects of ecological restoration on microbial activity, microbial functional diversity, and soil organic matter in mixed-oak forests of southern Ohio, USA. Applied Soil Ecology, 35, 281-290. |
[16] | Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sørensen SJ, Bååth E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000). Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity- ecosystem function relationship. Oikos, 90, 279-294. |
[17] | Guan SY (1986). Soil Enzyme and Its Study Method. Agricul- ture Press, Beijing. (in Chinese) |
[ 关松荫 (1986). 土壤酶及其研究法. 农业出版社, 北京.] | |
[18] | Guénon R, Gros R (2013). Frequent-wildfires with shortened time-since-fire affect soil microbial functional stability to drying and rewetting events. Soil Biology & Biochemistry, 57, 663-674. |
[19] | Gutknecht JL, Henry HA, Balser TC (2010). Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance. Pedobiologia, 53, 283-293. |
[20] | Hamman ST, Burke IC, Stromberger ME (2007). Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biology & Biochemistry, 39, 1703-1711. |
[21] | Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI (2005). Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management, 220, 166-184. |
[22] | Huang WW, Liu JJ, Zhou GG, Zhang DD, Deng QQ (2011). Effects of precipitation on soil acid phosphatase activity in three successional forests in Southern China. Biogeosciences, 8, 157-183. |
[23] | Li ZG, Luo YM, Teng Y (2008). Research Methods of Soil and Environment Microorganism. Science Press, Beijing. (in Chinese) |
[ 李振高, 骆永明, 滕应 (2008). 土壤与环境微生物研究法. 科学出版社, 北京.] | |
[24] | Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 51-71. |
[25] | Perucci P (1992). Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biology and Fertility of Soils, 14, 54-60. |
[26] | Pourreza M, Hosseini SM, Safari Sinegani AA, Matinizadeh M, Dick WA (2014). Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year. Geoderma, 213, 95-102. |
[27] | Raison RJ (1979). Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant and Soil, 51, 73-108. |
[28] |
Rodriguez-Loinaz G, Onaindia M, Amezaga I, Mijangos I, Garbisu C (2008). Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biology & Biochemistry, 40, 49-60.
DOI URL |
[29] |
Saa A, Trasar-Cepeda MC, Gil-Sotres F, Carballas T (1993). Changes in soil phosphorus and acid phosphatase activity immediately following forest fires. Soil Biology & Bio- chemistry, 25, 1223-1230.
DOI URL |
[30] |
Sàchez-Monedero MA, Mondini C, Cayuela ML, Roig A, Contin M, de Nobili M (2008). Fluorescein diacetate hydrolysis, respiration and microbial biomass in freshly amended soils. Biology and Fertility of Soils, 44, 885-890.
DOI URL |
[31] | Schimel J (1995). Ecosystem consequences of microbial diversity and community structure. In: Chapin F, Stuart III, Körner C eds. Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences. Springer, Berlin. 239-254. |
[32] | Schinner F, Ohlinger R, Kandeler E, Margesin R (1995). Methods in Soil Biology. Springer, Berlin. |
[33] | Shannon CE (2001). A mathematical theory of communication. ACM Sigmobile Mobile Computing and Communications Review, 5, 3-55. |
[34] |
The European Bioinformatics Institute (2004). Enzyme structures database. http://www.ebi.ac.uk/thornton-srv/ databases/enzymes/. Cited 2014-04-13.
URL PMID |
[35] | Wang CT, Cao GM, Wang QL, Jing ZC, Ding LM, Long RJ (2007). The change of plant community species composi- tion and biomass of alpine meadow in Qinghai-Tibet Pla- teau along the environmental gradient. Science in China (Series C: Life Sciences), 37, 585-592. (in Chinese) |
[ 王长庭, 曹广民, 王启兰, 景增春, 丁路明, 龙瑞军 (2007). 青藏高原高寒草甸植物群落物种组成和生物量沿环境梯度的变化. 中国科学(C辑: 生命科学), 37, 585-592.] | |
[36] |
Wang X, Xiang CH, Li XW, Wen DJ (2013). Effects of a winter wildfire on plant community structure and forage quality in subalpine grassland of western Sichuan, China. Chinese Journal of Plant Ecology, 37, 922-932. (in Chinese with English abstract)
DOI URL |
[ 王谢, 向成华, 李贤伟, 文冬菊 (2013). 冬季火对川西亚高山草地植物群落结构和牧草质量的影响. 植物生态学报, 37, 922-932.]
DOI URL |
|
[37] | Weaver RW, Angle JS, Bottmley PS (1994). Method of Soil Analysis. Soil Science Society of America, Madison. |
[38] | Zak JC, Willig MR, Moorhead DL, Wildman HG (1994). Functional diversity of microbial communities: a quantitative approach. Soil Biology & Biochemistry, 26, 1101-1108. |
[39] |
Zhang YM, Wu N, Zhou GY, Bao WK (2005). Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Applied Soil Ecology, 30, 215-225.
DOI URL |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[3] | YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai [J]. Chin J Plant Ecol, 2024, 48(3): 377-389. |
[4] | NIU Yi-Di, CAI Ti-Jiu. Changes in species diversity and influencing factors in secondary forest succession in northern Da Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 349-363. |
[5] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[6] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[7] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[8] | YANG Xin, REN Ming-Xun. Species distribution pattern and formation mechanism of mangrove plants around the South China Sea [J]. Chin J Plant Ecol, 2023, 47(8): 1105-1115. |
[9] | YU Xiao, JI Ruo-Xuan, REN Tian-Meng, XIA Xin-Li, YIN Wei-Lun, LIU Chao. Distribution, characteristics and classification of Caryopteris mongholica communities in northern China [J]. Chin J Plant Ecol, 2023, 47(8): 1182-1192. |
[10] | ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction [J]. Chin J Plant Ecol, 2023, 47(7): 895-911. |
[11] | ZHANG Zhong-Fu, WANG Si-Hai, YANG Wei, CHEN Jian. Response of rhizosphere microbial community structure and functional characteristics to health status of Malania oleifera [J]. Chin J Plant Ecol, 2023, 47(7): 1020-1031. |
[12] | GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 882-894. |
[13] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[14] | YANG Jia-Rong, DAI Dong, CHEN Jun-Fang, WU Xian, LIU Xiao-Lin, LIU Yu. Insight into recent studies on the diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species [J]. Chin J Plant Ecol, 2023, 47(6): 745-755. |
[15] | HU Tong-Xin, LI Bei, LI Guang-Xin, REN Yue-Xiao, DING Hai-Lei, SUN Long. Effects of fire originated black carbon on species composition of ectomycorrhizal fungi in a Larix gmelinii forest in growing season [J]. Chin J Plant Ecol, 2023, 47(6): 792-803. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn