Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (10): 1155-1164.DOI: 10.3773/j.issn.1005-264x.2010.10.004
• Research Articles • Previous Articles Next Articles
ZHOU Shuang-Xi1,2, WU Dong-Xiu1,*(), ZHANG Lin1,2, SHI Hui-Qiu1,2
Received:
2010-05-11
Accepted:
2010-06-23
Online:
2010-05-11
Published:
2010-10-31
Contact:
WU Dong-Xiu
ZHOU Shuang-Xi, WU Dong-Xiu, ZHANG Lin, SHI Hui-Qiu. Effects of changing precipitation patterns on seedlings of Stipa grandis, a dominant plant of typical grassland of Inner Mongolia, China[J]. Chin J Plant Ecol, 2010, 34(10): 1155-1164.
月 Month | 月平均气温 Monthly mean air temperature (℃) | 月平均地温 Monthly mean ground temperature (℃) | 蒸发量 Evaporation (mm) |
---|---|---|---|
7 | 19.8 | 25.4 | 283.2 |
8 | 18.5 | 22.6 | 295.2 |
9 | 11.3 | 13.5 | 202.9 |
Table 1 Monthly mean air and ground temperature, and evaporation of July, August, and September of 2009 at Inner Mongolia Grassland Ecosystem Research Station of Chinese Academy of Sciences
月 Month | 月平均气温 Monthly mean air temperature (℃) | 月平均地温 Monthly mean ground temperature (℃) | 蒸发量 Evaporation (mm) |
---|---|---|---|
7 | 19.8 | 25.4 | 283.2 |
8 | 18.5 | 22.6 | 295.2 |
9 | 11.3 | 13.5 | 202.9 |
Fig. 1 Dynamics of aboveground biomass (A), belowground biomass (B), total biomass (C) of Stipa grandis seedlings in different precipitation patterns (mean ± SE, n = 5). Differences between each group were tested using One-way ANOVA with a Tukey post hoc test of significance; significant differences at p < 0.05 are indicated by different letters. I1, precipitation interval of 5 days; I2, precipitation interval of 15 days; Q1, precipitation quantity of 150 mm; Q2, precipitation quantity of 225 mm.
变量 Source of variation | 地上生物量Aboveground biomass | 地下生物量 Belowground biomass | 总生物量 Total biomass | 根冠比自然对数 ln (root / shoot ratio) | 根拓展生物量 Root proliferation biomass to unplanted half bucket area |
---|---|---|---|---|---|
9.30 | |||||
Q | 5.56* | 0.72 | 3.53 | 3.86 | 0.43 |
I | 20.48*** | 14.70*** | 23.45*** | 3.46 | 6.46* |
Q × I | 0.13 | 10.60*** | 0.88 | 6.42* | 8.54** |
8.30 | |||||
Q | 10.56** | 11.04** | 12.21** | 0.65 | 2.36 |
I | 8.52** | 3.54 | 7.61* | 4.16 | 0.06 |
Q × I | 0.04 | 1.74 | 0.36 | 1.02 | 2.08 |
8.15 | |||||
Q | 4.72* | 5.85* | 5.75* | 3.26 | 3.35 |
I | 0.49 | 2.02 | 1.19 | 2.66 | 0.95 |
Q × I | 0.34 | 0.01 | 0.13 | 1.05 | 0.09 |
7.31 | |||||
Q | 0.40 | 0.51 | 0.50 | 0.31 | 0.02 |
I | 1.40 | 4.18 | 2.88 | 5.85* | 0.01 |
Q × I | 0.32 | 0.00 | 0.09 | 0.10 | 0.47 |
Table 2 Results (F-values) based on Two-way ANOVA of the effects of total precipitation quantity and precipitation interval on aboveground biomass, belowground biomass, total biomass, root/shoot ratio, and root proliferation biomass to the unplanted half bucket area of Stipa grandis seedlings
变量 Source of variation | 地上生物量Aboveground biomass | 地下生物量 Belowground biomass | 总生物量 Total biomass | 根冠比自然对数 ln (root / shoot ratio) | 根拓展生物量 Root proliferation biomass to unplanted half bucket area |
---|---|---|---|---|---|
9.30 | |||||
Q | 5.56* | 0.72 | 3.53 | 3.86 | 0.43 |
I | 20.48*** | 14.70*** | 23.45*** | 3.46 | 6.46* |
Q × I | 0.13 | 10.60*** | 0.88 | 6.42* | 8.54** |
8.30 | |||||
Q | 10.56** | 11.04** | 12.21** | 0.65 | 2.36 |
I | 8.52** | 3.54 | 7.61* | 4.16 | 0.06 |
Q × I | 0.04 | 1.74 | 0.36 | 1.02 | 2.08 |
8.15 | |||||
Q | 4.72* | 5.85* | 5.75* | 3.26 | 3.35 |
I | 0.49 | 2.02 | 1.19 | 2.66 | 0.95 |
Q × I | 0.34 | 0.01 | 0.13 | 1.05 | 0.09 |
7.31 | |||||
Q | 0.40 | 0.51 | 0.50 | 0.31 | 0.02 |
I | 1.40 | 4.18 | 2.88 | 5.85* | 0.01 |
Q × I | 0.32 | 0.00 | 0.09 | 0.10 | 0.47 |
变量 Source of variation | 地上生物量Aboveground biomass | 地下生物量 Belowground biomass | 总生物量 Total biomass | 根冠比自然对数 ln (root / shoot ratio) | 根拓展生物量 Root proliferation biomass to the unplanted half bucket area |
---|---|---|---|---|---|
Q | 14.92*** | 12.48** | 17.19*** | 0.02 | 0.87 |
I | 11.50** | 0.77 | 7.74* | 11.33*** | 1.11 |
Q × I | 0.00 | 4.61* | 0.68 | 0.35 | 3.55 |
T | 124.10*** | 135.16*** | 150.13*** | 9.54*** | 92.26*** |
T × Q | 3.83* | 2.81* | 3.30* | 1.55 | 2.09 |
T × I | 10.08*** | 6.40*** | 9.83*** | 0.94 | 4.81** |
T × Q × I | 0.20 | 2.04 | 0.32 | 1.51 | 5.34** |
Table 3 Results (F-values) based on repeated measures ANOVA of the effects of sampling time, total precipitation quantity and precipitation interval on aboveground biomass, belowground biomass, total biomass, root/shoot ratio, and root proliferation biomass to the unplanted half bucket area of Stipa grandis seedlings
变量 Source of variation | 地上生物量Aboveground biomass | 地下生物量 Belowground biomass | 总生物量 Total biomass | 根冠比自然对数 ln (root / shoot ratio) | 根拓展生物量 Root proliferation biomass to the unplanted half bucket area |
---|---|---|---|---|---|
Q | 14.92*** | 12.48** | 17.19*** | 0.02 | 0.87 |
I | 11.50** | 0.77 | 7.74* | 11.33*** | 1.11 |
Q × I | 0.00 | 4.61* | 0.68 | 0.35 | 3.55 |
T | 124.10*** | 135.16*** | 150.13*** | 9.54*** | 92.26*** |
T × Q | 3.83* | 2.81* | 3.30* | 1.55 | 2.09 |
T × I | 10.08*** | 6.40*** | 9.83*** | 0.94 | 4.81** |
T × Q × I | 0.20 | 2.04 | 0.32 | 1.51 | 5.34** |
Fig. 3 Dynamics of root proliferation biomass of Stipa grandis seedlings to the unplanted half bucket area in different precipitation patterns (mean ± SE, n = 5). Notes see Fig. 1.
[1] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 89, 2140-2153.
URL PMID |
[2] |
Chou WW, Silver WL, Jackson RD, Thompson AW, Allen- Diaz B (2008). The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biology, 14, 1382-1394.
DOI URL |
[3] | Commission Editorial of Inner Mongolia Flora (内蒙古植物志编写委员会) (1994). Flora Innermongolica (内蒙古植物志). Inner Mongolia People’s Press, Hohhot. 5, 195-205. (in Chinese) |
[4] |
Dodd MB, Lauenroth WK, Welker JM (1998). Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community. Oecologia, 117, 504-512.
URL PMID |
[5] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074.
URL PMID |
[6] |
Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2000). Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems, 3, 308-319.
DOI URL |
[7] |
Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2003). Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia, 137, 245-251.
DOI URL |
[8] |
Fravolini A, Hultine KR, Brugnoli E, Gazal R, English NB, Williams DG (2005). Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size. Oecologia, 144, 618-627.
URL PMID |
[9] |
Gordon HB, Whetton PH, Pittock AB, Fowler AM, Haylock MR (1992). Simulated changes in daily precipitation intensity due to the enhanced greenhouse effect-implications for extreme precipitation events. Climate Dynamics, 8, 83-102.
DOI URL |
[10] |
Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Forland E, Zhai PM (1999). Changes in the probability of heavy precipitation: important indicators of climatic change. Climate Change, 42, 243-283.
DOI URL |
[11] |
Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global Change Biology, 11, 322-334.
DOI URL |
[12] |
Heisler-White JL, Blair JM, Kelly EF, Harmoney K, Knapp AK (2009). Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biology, 15, 2894-2904.
DOI URL |
[13] |
Heisler-White JL, Knapp AK, Kelly EF (2008). Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158, 129-140.
URL PMID |
[14] | Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[15] | IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK. |
[16] |
Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389-411.
URL PMID |
[17] |
Knapp AK, Briggs JM, Koelliker JK (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems, 4, 19-28.
DOI URL |
[18] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI URL PMID |
[19] |
Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484.
URL PMID |
[20] |
Lauenroth WK, Sala OE (1992). Long-term forage production of North American shortgrass steppe. Ecological Applications, 2, 397-403.
URL PMID |
[21] |
Lundholm JT, Larson DW (2004). Experimental separation of resource quantity from temporal variability: seedling responses to water pulses. Oecologia, 141, 346-352.
URL PMID |
[22] |
Maestre FT, Reynolds JF (2007). Amount or pattern? Grassland responses to the heterogeneity and availability of two key resources. Ecology, 88, 501-511.
URL PMID |
[23] | Meehl GA, Arblaster JM, Tebaldi C (2005). Understanding future patterns of increased precipitation intensity in climate model simulations. Geophysical Research Letters, 32, L18719. |
[24] |
Milchunas DG, Lauenroth WK (2001). Belowground primary production by carbon isotope decay and long term root biomass dynamics. Ecosystems, 4, 139-150.
DOI URL |
[25] |
Mokany K, Raison RJ, Prokushkin AS (2006). Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12, 84-96.
DOI URL |
[26] |
Nippert JB, Knapp AK, Briggs JM (2006). Intra-annual rainfall variability and grassland productivity: Can the past predict the future? Plant Ecology, 184, 65-74.
DOI URL |
[27] |
Noy-Meir I (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4, 25-51.
DOI URL |
[28] |
Novoplansky A, Goldberg D (2001). Interactions between neighbour environments and drought resistance. Journal of Arid Environments, 47, 11-32.
DOI URL |
[29] |
Robertson TR, Bell CW, Zak JC, Tissue DT (2009). Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland. New Phytologist, 181, 230-242.
DOI URL |
[30] |
Sala OE, Lauenroth WK (1982). Small rain events: an ecological role in semi-arid regions. Oecologia, 53, 301-304.
URL PMID |
[31] |
Sala OE, Lauenroth WK, Parton WJ (1992). Long-term soil-water dynamics in the shortgrass steppe. Ecology, 73, 1175-1181.
DOI URL |
[32] |
Schenk HJ, Jackson RB (2002). The global biogeography of roots. Ecological Monographs, 72, 311-328.
DOI URL |
[33] |
Sher AA, Goldberg DE, Novoplansky A (2004). The effect of mean and variance in resource supply on survival of annuals from Mediterranean and desert environments. Oecologia, 141, 353-362.
DOI URL |
[34] |
Schwinning S, Sala OE (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141, 211-220
DOI URL PMID |
[35] |
Schwinning S, Sala OE, Loik ME, Ehleringer JR (2004). Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia, 141, 191-193.
DOI URL PMID |
[36] |
Scurlock JMO, Hall DO (1998). The global carbon sink: a grassland perspective. Global Change Biology, 4, 229-233.
DOI URL |
[37] |
Sponseller RA (2007). Precipitation pulses and soil CO2 flux in an Sonoran Desert ecosystem. Global Change Biology, 13, 426-436
DOI URL |
[38] | Sun Y (孙颖), Ding YH (丁一汇) (2009). A projection of future changes in summer precipitation and monsoon in East Asia. Science in China (Series D) (中国科学D辑), 39, 1487-1504. (in Chinese) |
[39] |
Swemmer AM, Knapp AK, Snyman HA (2007). Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. Journal of Ecology, 95, 780-788.
DOI URL |
[40] |
Thornley JH (1972a). A balanced quantitative model for root: shoot ratios in vegetative plants. Annals of Botany, 36, 431-441.
DOI URL |
[41] |
Thornley JH (1972b). A model to describe the partitioning of photosynthate during vegetative plant growth. Annals of Botany, 36, 419-430.
DOI URL |
[42] |
Titlyanova AA, Romanova IP, Kosykh NP, Mironycheva- Tokareva NP (1999). Pattern and process in above-ground and below-ground components of grassland ecosystems. Journal of Vegetation Science, 10, 307-320.
DOI URL |
[43] |
Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smitth MD, Smith SD, Tissue DT, Zak JC (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53, 941-952.
DOI URL |
[44] |
Williams JW, Jackson ST, Kutzbacht JE (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America, 104, 5738-5742.
DOI URL PMID |
[45] |
Wythers KR, Lauenroth WK, Paruelo JM (1999). Bare-soil evaporation under semi-arid field conditions. Soil Science Society of America Journal, 63, 1341-1349.
DOI URL |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[8] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[9] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[10] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[11] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[12] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[13] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[14] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[15] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn