Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (5): 458-470.doi: 10.17521/cjpe.2018.0212

• Research Articles • Previous Articles    

Reuse of retranslocated nutrients in tissues of Chinese fir in plantations of different ages

LÜ Zhong-Cheng1,4,KANG Wen-Xing1,2,3,*(),HUANG Zhi-Hong1,2,3,ZHAO Zhong-Hui1,2,3,DENG Xiang-Wen1,2,3   

  1. 1. Central South University of Forestry and Technology, Changsha 410004, China
    2. National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China;
    3. Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem, Huitong, Hunan 418307, China
    4. Hunan Police College, Changsha 410138, China
  • Online:2019-10-28 Published:2019-05-20
  • Contact: KANG Wen-Xing E-mail:kwx1218@126.com
  • Supported by:
    Supported by the National Forestry Public Welfare Industry Research Project(201104009);The Ministry of Science and Technology Public Welfare Research Project(2007-04-15);The National Field Science Observation and Research Station Project(20080615)

Abstract: Aims The purpose of this study is to investigate the reuse characteristics of nutrients (Nitrogen, Phosphorus, Potassium, Calcium, Magnesium) in Cunninghamia lanceolata with different ages, and therefore provide scientific support for better management of the high-yield plantations in China. Methods We estimated the nutrient retranslocation from dying branches and leaves according to nutrient concentration differences between living and dead, and the amount of dead branches and leaves in Chinese fir forests of different age classes in Hunan Huitong. Based on the difference in the nutrient concentrations of Chinese fir organs at the beginning and end of each age class, the nutrient transport amount from “biomass produced before the beginning of a given age class, which is still alive at the end of the age class” (referred as “biomass-still-alive” hereafter) was estimated for the age class. The nutrient utilization characteristics in forest production were comprehensively analyzed by combining the nutrients transferred from dying branches and leaves with those transferred from the biomass still alive and absorbed from the soil. Important findings The results showed that the annual biomass produced by the retranslocated nutrients of dying branches and leaves and their proportion in the total biomass were 217 kg·hm -2·a -1 and 3.52%, respectively, for forests 1-7 years old, and increased to 2 540 kg·hm -2·a -1and 17.50%, respectively, when forests reached 20-25 years old. The biomass produced by the retranslocated nutrients of dying branches and leaves and its proportion in the total biomass increased with the increase of forest age. The average annual biomass produced by the biomass-still-alive in stands of 12-16, 17-20 and 21-25 years old was 385, 561 and 450 kg·hm -2·a -1, accounting for 3.40%, 3.40% and 3.11% of the total biomass production, respectively. The nutrient retranslocation from the biomass-still-alive first increased and then decreased with the increase of forest age, and the proportion of the biomass produced by these nutrients to the total biomass showed a decreasing trend with the increase of forest age. The results show that the death of branches and leaves always results in reuse of retranslocated nutrients. On the other hand, the reuse of retranslocated nutrients from the biomass-still-alive occurs only after canopy closure. The mechanism of nutrient redistribution and storage, the growth pattern and the nutrient demand and utilization efficiency at different growth stages of Chinese fir jointly regulate and control the annual changes of nutrient retranslocation before branches and leaves die and the reuse of retranslocated nutrients from the biomass-still-alive.

Key words: Cunninghamia lanceolata, plantation, retranslocated nutrients, reuse of nutrients, biomass production

Fig. 1

Productivity of Chinese fir forests in different age classes. In the same age, the different lowercase letters indicate significant differences among organs (p < 0.05)."

Table 1

Average annual nutrient element transfer within the body of Chinese fir in different ages"

林龄
Stand age (a)
养分元素 Nutrient elements (kg·hm-2·a-1) 合计
Total (kg·hm-2·a-1)
氮 Nitrogen 磷 Phosphorus 钾 Potassium 钙 Calcium 镁 Magnesium
8-11 +3.11aM +0.37bM +1.36cM +1.96dM +1.03eM +7.83M
12-16 -1.41aN -0.43bN -1.27cN -1.90dM -0.82eN -5.83N
17-20 -1.66aR -0.53bR -1.40cM -2.26dR -0.90eR -6.75R
21-25 -1.30aS -0.40bN -1.06cS -1.77dS -0.65eS -5.18S

Table 2

Average annual nutrient transfer in organs of Chinese fir in different ages"

林龄
Stand age (a)
干 Stem wood (kg·hm-2·a-1) 皮 Stem bark
(kg·hm-2·a-1)
枝 Twig
(kg·hm-2·a-1)
叶 Needle
(kg·hm-2·a-1)
根 Root
(kg·hm-2·a-1)
合计 Total
(kg·hm-2·a-1)
8-11 +1.01aM +1.21bM +2.10cM +2.92dM +0.59eM +7.83M
12-16 -1.09aN -0.64bN -1.46cN -1.57dN -1.07aN -5.83N
17-20 -1.79aR -0.87bR -1.63aR -1.18dR -1.28dR -6.75R
21-25 -1.65aR -0.71bS -1.08cS -0.86dS -0.88dS -5.18S

Table 3

Average annual nutrient element transferred before death of branches and leaves of Chinese fir"

林龄
Stand age (a)
器官
Organ
养分元素 Nutrient elements (kg·hm-2·a-1) 合计 Total
(kg·hm-2·a-1)
磷 Phosphorus 氮 Nitrogen 钾 Potassium 钙 Calcium 镁 Magnesium
1-7 枝 Twig 0.01bA 0.05aA 0.11cA 0.01bA 0.01bA 0.19A
叶 Needle 0.18bB 1.25aB 1.30cB 0.19bB 0.12cB 3.04B
合 Total 0.19bB 1.30aQ 1.41cQ 0.20dB 0.13eQ 3.23Q
8-11 枝 Twig 0.04bC 0.24aC 0.42cC 0.03dD 0.03dC 0.77C
叶 Needle 0.62bD 5.24aD 4.62cD 0.86dF 0.38eD 11.72D
合 Total 0.66bE 5.48aE 5.04cE 0.89dE 0.41eE 12.48E
12-16 枝 Twig 0.15bM 1.04aM 1.49cM 0.16dM 0.09eM 2.93M
叶 Needle 1.03bN 8.47aN 6.76cN 1.44dN 0.43eN 18.13N
合 Total 1.18bT 9.51aT 8.25cT 1.60dT 0.52eT 21.06T
17-20 枝 Twig 0.39bK 2.87aK 3.47cK 0.45dK 0.18eK 7.36K
叶 Needle 1.52bR 11.98aR 8.51cR 2.11dR 0.41eR 24.53R
合 Total 1.91bS 14.85aS 11.98cS 2.56dS 0.59eS 31.89S
21-25 枝 Twig 0.41bK 3.57aW 3.71cW 0.57dW 0.14eW 8.40W
叶 Needle 1.34bG 10.30aG 6.94cG 2.02dR 0.28eG 20.88G
合 Total 1.75bP 13.87aP 10.65cP 2.59dP 0.42eP 29.28P

Table 4

Annual nutrients taken up from soils by Chinese fir plantations at different ages"

林龄
Stand age (a)
生产力
Prolificacy
(t·hm-2·a-1)
计算公式
Calculation formula
养分元素 Nutrient elements (kg·hm-2·a-1) 合计 Total
(kg·hm-2·a-1)

Phosphorus

Nitrogen

Potassium

Calcium

Magnesium
1-7 6.17 ARR 2.92 30.43 21.44 28.66 7.54 90.79
公式(8) Formula (8) 2.74 29.18 20.14 28.47 7.42 87.57
8-11
10.63 ARR 5.60 57.30 36.45 50.26 14.47 164.08
公式(8) Formula (8) 5.31 54.93 32.77 51.33 15.09 159.43
12-16
11.31 ARR 5.79 61.09 37.79 53.10 15.35 173.10
公式(7) Formula (7) 4.18 50.17 28.27 49.60 13.99 146.21
17-20
16.51 ARR 6.72 73.30 44.69 58.24 16.41 199.36
公式(7) Formula (7) 4.28 56.79 31.31 53.42 14.92 160.72
21-25
14.45 ARR 5.61 60.77 38.46 48.66 13.70 167.19
公式(7) Formula (7) 3.45 45.60 26.75 44.30 12.63 132.73

Table 5

Nutrients and sources needed for producing 1 t dry biomass in Chinese fir plantations"

林龄
Stand age
(a)
养分来源
Source of nutrients
养分元素 Nutrient elements (kg·hm-2·a-1) 合计 Total
(kg·hm-2·a-1)

Phosphorus

Nitrogen

Potassium

Calcium

Magnesium
1-7
土壤中吸收 Absorbed from the soil 0.44 4.73 3.26 4.62 1.20 14.25
衰老枝叶回流 Return from senescent branches and leaves 0.03 0.21 0.23 0.03 0.02 0.52
TPGM 0 0 0 0 0 0
合计 Total 0.47 4.94 3.49 4.65 1.22 14.77
8 -11

ASNAPGM 0.50 5.17 3.08 4.83 1.42 15.00
衰老枝叶回流 Return from senescent branches and leaves 0.06 0.52 0.47 0.08 0.04 1.17
TPGM 0 0 0 0 0 0
合计 Total 0.56 5.69 3.55 4.91 1.46 16.17
12-16
土壤中吸收 Absorbed from the soil 0.37 4.44 2.50 4.39 1.23 12.93
衰老枝叶回流 Return from senescent branches and leaves 0.10 0.84 0.73 0.14 0.05 1.86
TPGM 0.05 0.10 0.13 0.14 0.10 0.52
合计 Total 0.52 5.38 3.36 4.67 1.38 15.31
17-20
土壤中吸收 Absorbed from the soil 0.26 3.44 1.90 3.23 0.90 9.73
衰老枝叶回流 Return from senescent branches and leaves 0.12 0.89 0.72 0.16 0.04 1.93
TPGM 0.05 0.11 0.10 0.07 0.08 0.41
合计 Total 0.43 4.44 2.72 3.46 1.02 12.07
21-25
从土壤中吸收 Absorbed from the soil 0.24 3.16 1.85 3.06 0.87 9.18
衰老枝叶回流 Return from senescent branches and leaves 0.12 0.96 0.74 0.18 0.03 2.03
TPGM 0.03 0.09 0.07 0.12 0.05 0.36
合计 Total 0.39 4.21 2.66 3.36 0.95 11.57
16 Killingbeck KT (1996). Nutrient in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
17 Kobe RK, Lepcryk CA, Iyer M (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780-2792.
18 Li QL, Mo QF, Wang FM, Li YW, Xu X, Zou B, Li XB, Chen Y, Li ZA (2015). Nutrient utilization by Casuarina equisetifolia plantation of different ages in the tropical coastal area of South China. Chinese Journal of Applied and Environmental Biology, 21, 139-146.
[ 李钦禄, 莫其锋, 王法明, 李应文, 徐馨, 邹碧, 李晓波, 陈瑶, 李志安 (2015). 华南热带沿海不同林龄木麻黄人工林养分利用特征. 应用与环境生物学报, 21, 139-146.]
19 Lim MT, Cousens JF (1986). The internal transfer of nutrients in Scot pine stand 2. The patterns of transfer and the effects of nitrogen availability. Forestry, 59, 17-21.
20 Lin BP, He ZM, Lin SZ, Hu HT, Qiu LJ, Liu ZM (2017). Needles macronutrient concentrations and retrains location characteristics in Chinese fir plantations of different ages. Journal of Forest and Environment, 37(1), 34-39.
[ 林宝平, 何宗明, 林思祖, 胡欢甜, 邱岭军, 刘桌明 (2017). 不同林龄杉木针叶大量元素转移特征. 森林与环境学报, 37(1), 34-39.]
21 Lin DX, Liu KH, Luo SF (2002). Dynamics and cycling analysis of nutrient elements in Eucalyptus urophylla. Chinese Journal of Applied and Environmental Biology, 8, 148-153.
[ 林德喜, 刘开汉, 罗水发 (2002). 尾叶桉营养元素动态和循环分析. 应用与环境生物学报, 8, 148-153.]
22 Liu AQ, Fan SH, Lin KM, Ma XQ, Sheng WT (2005). Comparison on nutrient cycling in different generation plantations of Chinese fir. Plant Nutrition and Fertilizer Science, 11, 273-278.
[ 刘爱琴, 范少辉, 林开敏, 马祥庆, 盛炜彤 (2005). 不同栽植代数杉木林养分循环的比较研究. 植物营养与肥料学报, 11, 273-278.]
23 Marschner H, Kirkby EA, Engels C (1997). Importance of cycling and recycling of mineral nutrients within plants for growth and development. Botanica Acta, 110, 265-273.
24 Mayor JR, Wright SJ, Turner BL (2013). Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology, 102, 36-44.
25 Mei L, Wang ZQ, Cheng YH, Guo DL (2004). A review: Factors influencing fine root longevity in forest ecosystems. Acta Phytoecologica Sinica, 28, 704-710.
[ 梅莉, 王政权, 程云环, 郭大立 (2004). 林木细根寿命及其影响因子研究进展. 植物生态学报, 28, 704-710.]
26 Meier CE, Grier CC, Cole DW (1985). Below and ground N and P use by Abies amabilis stands. Ecology, 66, 1928-1942.
27 Milla R, Castro-Diez P, Maestro-Martinez M (2005). Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants? Plant and Soil, 278, 303-313.
28 Miller HG (1984). Dynamics of nutrient cycling in plantation ecosystems. In: Bowen GD, Nambiar EKS eds. Nutrition of Plantation Forests. Academic Press, London. 53-78.
29 Miller HG (1986). Carbon × nutrient interaction—The limitations to productivity. Tree Physiology, 2, 373-385.
30 Moghaddas EEY, Stephens SL (2007). Thinning burning and thin-burn fuel treatment effects on soil properties in a Sierra Nevada mixed conifer forests. Forest Ecology and Management, 250, 156-166.
1 Aerts R (1990). Nutrient use efficiency in evergreen and deciduous species from heath lands. Oecologia, 84, 391-397.
2 Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: A reevaluation of processes and patterns. Advances in Ecological Research, 37, 1-67.
31 Ratnam J, Sankaran M (2008). Hanan in a tropical savanna: Variation N, P nutrient resorption patterns of plant functional groups and functional significance. Oecologia, 157, 141-151.
32 Shaver GR, Melillo JM (1984). Nutrient budgets of marsh plants: Efficiency concepts and relation to availability. Ecology, 65, 1491-1510.
3 An Z, Niu DC, Wen HY, Yang Y, Zhang HR, Fu H (2011). Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grass lands in the Loess Plateau, China. Chinese Journal of Plant Ecology, 35, 801-807.
[ 安卓, 牛得草, 文海燕, 杨益, 张洪荣, 傅华 (2011). 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响. 植物生态学报, 35, 801-807.]
33 Tian DL, Shen Y, Kang WX, Xiang WH, Yan WD, Deng XW (2011). Characteristics of nutrient cycling in first and second rotations of Chinese fir plantations. Acta Ecologica Sinica, 31, 5025-5032.
[ 田大伦, 沈燕, 康文星, 项文化, 闫文德, 邓湘雯 (2011). 连栽第1和第2代杉木人工林养分循环的比较. 生态学报, 31, 5025-5032.]
4 Cao JH, Tao ZL, Jiang JS, Xie GS, Zhao CM (2010). Nutrient use efficiency of clone PR107 at various age. Chinese Journal of Tropical Crops, 31, 2091-097.
[ 曹建华, 陶忠良, 蒋菊生, 谢贵水, 赵春梅 (2010). 不同年龄橡胶树PR107养分利用效率研究. 热带作物学报, 31, 2091-2097.]
34 Wang RL, Cheng RM, Xiao WF, Feng XH, Liu ZB, Wang XR (2012). Influencing factors of fine root production and turnover in forest ecosystem. World Forestry Research, 21(1), 19-24.
[ 王瑞丽, 程瑞梅, 肖文发, 封晓辉, 刘泽彬, 王晓荣 (2012). 森林细根生产和周转的影响因素. 世界林业研究, 21(1), 19-24.]
35 Wang XH, Huang JJ, Yan ER (2004). A study on leaf nutrient resorption of some trees in Tiantong National Forest Park. Chinese Journal of Ecology, 33(4), 13-16.
5 Chen HYH, Brassard BW (2013). Intrinsic and extrinsic controls of fine root life span. Critical Reviews in Plant Sciences, 32, 151-161.
6 Chen RS, Kang WX, Zhou YQ, Tian DL, Xiang WH (2018). Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest. Chinese Journal of Plant Ecology, 42, 173-184.
35 [ 王希华, 黄建军, 闫恩荣 (2004). 天童国家森林公园若干树种叶水平上养分利用效率的研究. 生态学杂志, 33(4), 13-16.]
36 Williams RF (1955). Redistribution of mineral elements during development. Annual Review of Plant Physiology, 6, 25-42.
6 [ 陈日升, 康文星, 周玉泉, 田大伦, 项文化 (2018). 杉木人工林养分循环随林龄变化的特征. 植物生态学报, 42, 173-184.]
7 Del Arco JM, Esucdero A, Garrido MV (1991). Effects of site characteristics on nitrogen retrains location from senescing leaves. Ecology, 58, 701-708.
37 Wu PF, Ma XQ (2009). Research advances in the mechanisms of high nutrient use efficiency in plants. Acta Ecologica Sinica, 29, 427-437.
[ 吴鹏飞, 马祥庆 (2009). 植物养分高效利用机制研究进展. 生态学报, 29, 427-437.]
8 Deng HJ, Chen AM, Yan SW, Lin YM, Zhang GS, Du K, Wu CZ, Hong W (2015). Nutrient resorption efficiency and C:N:P stoichiometry in different ages of Leucaena leucocephala. Chinese Journal of Applied and Environmental Biology, 21, 522-527.
[ 邓浩俊, 陈爱民, 严思维, 林勇明, 张广帅, 杜锟, 吴承祯, 洪伟 (2015). 不同林龄新银合欢重吸收率及其C:N:P化学计量特征. 应用与环境生物学报, 21, 522-527.]
38 Xiang WH, Tian DL (2002). Nutrient cycling in Pinus massoniana stands of different age classes. Acta Phytoecologica Sinica, 26, 89-95.
[ 项文化, 田大伦 (2002). 不同年龄阶段马尾松人工林养分循环的研究. 植物生态学报, 26, 89-95.]
9 Division of Science and Technology of Ministry of Forestry Compiles (1994). Forest Ecosystem Research Methods. China Science and Technology Press, Beijing. 156-158.
[ 林业部科技司 (1994). 森林生态系统研究方法. 中国科学技术出版社, 北京. 156-158.]
39 Xiao XC, Li ZH, Tang ZJ, Zeng Q, Wang HF (2013). Effects of stand density on nutrient cycling rate and use efficiency of Pinus elliottii plantation. Chinese Journal of Ecology, 32, 2871-2880.
[ 肖兴翠, 李志辉, 唐作钧, 曾琴, 王海风 (2013). 林分密度对湿地松人工林养分循环速率和利用效率的影响. 生态学杂志, 32, 2871-2880.]
10 Eckstein RL, Karlsson PS (1977). Above-ground growth and nitrogen use by plant in a subarctic environment: Effects of habitat life-form and species. Oikos, 311-324.
11 Harrington RA, Fownes JH, Vitousek PM (2001). Production and resource use efficiencies in N- and P-limited tropical forests: A comparison of responses to long-term fertilization. Ecosystems, 4, 646-657.
40 Ye GF (2012). Age-related changes in nutrient resorption patterns and tannin concentration of Casuarina equisetifolia plantations. Journal of Tropical Forest Science, 24, 546-556.
41 Zeng DH, Chen GS, Chen FS, Zhao Q, Ji XY (2005). Foliar nutrients and their resorption efficiencies in four Pinus sylvestris var. mongolica plantations of different ages on sandy soil. Scientia Silvae Sinicae, 41(5), 21-27.
doi: 10.11707/j.1001-7488.20050504
12 He B, Qin WM, Yu HG, Liu YH, Qin L, Qin YH (2007). Biological cycling of nutrients in different ages classes of Acacia mangium plantation. Acta Ecologica Sinica, 27, 5158-5167.
[ 何斌, 秦武明, 余浩光, 刘运华, 覃林, 覃永华 (2007). 不同年龄阶段马占相思(Acacia mangium)人工林营养元素的生物循环. 生态学报, 27, 5158-5167.]
41 [ 曾德慧, 陈广生, 陈伏生, 赵琼, 冀小燕 (2005). 不同林龄樟子松叶片养分含量及其再吸收效率. 林业科学, 41(5), 21-27.]
doi: 10.11707/j.1001-7488.20050504
42 Zeng Q, Gao GW, Lin YM, Fan HQ (2008). Resorption efficiencies of nitrogen and phosphorus of leaves during senescence for two growth forms of Avicennia marina. Journal of Xiamen University (Natural Science), 47, 181-185.
13 Hosseini SM, Rouhi-Moghaddam E, Ebrahimi E (2008). Comparison of growth, nutrition and soil properties of pure stands of Quercus castaneifolia and mixed with Zelkova carpinifolia in the Hyrcanian forests of Iran. Forest Ecology and Management, 255, 1149-1160.
14 Huang JJ, Wang XH (2007). Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. Forest Ecology and Management, 239, 150-158.
42 [ 曾琦, 高国伟, 林益明, 范航清 (2008). 红树植物白骨壤叶片衰老过程的氮磷内吸收变化研究. 厦门大学学报(自然科学版), 47, 181-185.]
43 Zhang LH, Lin YM, Ye GF, Yin L, Zhou HC (2009). Nitrogen and phosphorus concentrations, N:P ratio and resorption efficiency of leaves in different forest types. Journal of Beijing Forestry University, 31(5), 67-72.
[ 张立华, 林益明, 叶功富, 殷亮, 周海超 (2009). 不同林分类型叶片氮磷含量, 氮磷比及其内吸收率. 北京林业大学学报, 31(5), 67-72.]
44 Zhao Q, Liu XY, Hu YL, Zeng DH (2010). Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii. Scientia Silvae Sinicae, 46(5), 14-19.
doi: 10.11707/j.1001-7488.20100503
[ 赵琼, 刘兴宇, 胡亚林, 曾德慧 (2010). 氮添加对兴安落叶松养分分配和再吸收效率的影响. 林业科学, 46(5), 14-19.]
doi: 10.11707/j.1001-7488.20100503
45 Zheng Y, Guo YR, Wang MT, Li M, Fan RR, Sun J, Yang FC, Zhong QL, Cheng DL (2017). Foliar nutrients and their resorption efficiencies of Pinus hwangshanensis along an elevation gradient of Wuyi Mountains in Jiangxi. Journal of Anhui Agricultural University, 44, 415-421.
[ 郑媛, 郭英荣, 王满堂, 李曼, 范瑞瑞, 孙俊, 杨福春, 钟全林, 程栋梁 (2017). 武夷山不同海拔梯度黄山松叶片养分含量及其再吸收效率. 安徽农业大学学报, 44, 415-421.]
46 Zhou LL (2014). Study on Nutrient Retranslocation and Nutrient Use Efficiency in Different Developmental-Staged Chinese Fir Plantations. PhD dissertation, Fujian Agriculture and Forestry University, Fuzhou. 80-82.
[ 周丽丽 (2014). 不同发育阶段杉木人工林养分内循环与周转利用效率的研究. 博士学位论文, 福建农林大学, 福州. 80-82.]
47 Zong N, Shi PL, Geng SB, Ma WL (2017). Nitrogen and phosphorus resorption efficiency of forests in North China. Chinese Journal of Eco-Agriculture, 25, 520-529.
15 Killingbeck KT (1986). The terminological jungle revisited: Making a case for use of the term resorption. Oikos, 46, 263-264.
47 [ 宗宁, 石培礼, 耿守保, 马维玲 (2017). 北方山区主要森林类型树木叶片氮、磷回收效率研究. 中国生态农业学报, 25, 520-529.]
[1] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[2] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[3] XI Ben-Ye, DI Nan, CAO Zhi-Guo, LIU Jin-Qiang, LI Dou-Dou, WANG Ye, LI Guang-De, DUAN Jie, JIA Li-Ming, ZHANG Rui-Na. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees [J]. Chin J Plan Ecolo, 2018, 42(9): 885-905.
[4] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[5] CHEN Ri-Sheng, KANG Wen-Xing, ZHOU Yu-Quan, TIAN Da-Lun, XIANG Wen-Hua . Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest [J]. Chin J Plan Ecolo, 2018, 42(2): 173-184.
[6] PENG Xi, YAN Wen-De, WANG Feng-Qi, WANG Guang-Jun, YU Fang-Yong, ZHAO Mei-Fang. Specific leaf area estimation model building based on leaf dry matter content of Cunninghamia lanceolata [J]. Chin J Plan Ecolo, 2018, 42(2): 209-219.
[7] CHEN Si-Tong, ZOU Xian-Hua, CAI Yi-Bing, WEI Dan, LI Tao, WU Peng-Fei, MA Xiang-Qing. Phosphorus distribution inside Chinese fir seedlings under different P supplies based on 32P tracer [J]. Chin J Plant Ecol, 2018, 42(11): 1103-1112.
[8] Juan XING, Cheng-Yang ZHENG, Chan-Ying FENG, Fa-Xu ZENG. Change of growth characters and carbon stocks in plantations of Pinus sylvestris var. mongolica in Saihanba, Hebei, China [J]. Chin J Plan Ecolo, 2017, 41(8): 840-849.
[9] Ze-Bin LIU, Yan-Hui WANG, Yu LIU, Ao TIAN, Ya-Rui WANG, Hai-Jun ZUO. Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China [J]. Chin J Plan Ecolo, 2017, 41(7): 749-760.
[10] Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN, Yu-Sheng YANG. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings [J]. Chin J Plan Ecolo, 2017, 41(2): 186-195.
[11] Si-Meng SONG, Dan-Ju ZHANG, Jian ZHANG, Wan-Qin YANG, Yan ZHANG, Yang ZHOU, Xun LI. Edge effects of forest gap in Pinus massoniana plantations on the ecological stoichiometry of Cinnamomum longepaniculatum [J]. Chin J Plan Ecolo, 2017, 41(10): 1081-1090.
[12] Qin WANG, Wan-Qin YANG, Fu-Zhong WU, Jian ZHANG, Bo TAN, Xi-Tao ZHANG. Characteristics of stump stock and decomposition in Pinus massoniana plantation [J]. Chin J Plan Ecolo, 2016, 40(5): 458-468.
[13] Xiao-Jie LI, Xiao-Fei LIU, De-Cheng XIONG, Wei-Sheng LIN, Ting-Wu LIN, You-Wen SHI, Jin-Sheng XIE, Yu-Sheng YANG. Impact of litterfall addition and exclusion on soil respiration in Cunninghamia lanceolata plantation and secondary Castanopsis carlesii forest in mid-subtropical China [J]. Chin J Plan Ecolo, 2016, 40(5): 447-457.
[14] Yan-Long JIA, Qian-Ru LI, Zhong-Qi XU, Wei-Guo SANG. Carbon cycle of larch plantation based on CO2FIX model [J]. Chin J Plan Ecolo, 2016, 40(4): 405-415.
[15] Wei ZHAO, Zhong-Min HU, Hao YANG, Lei-Ming ZHANG, Qun GUO, Zhi-Yan WU, De-Yi LIU, Sheng-Gong LI. Carbon density characteristics of sparse Ulmus pumila forest and Populus simonii plantation in Onqin Daga Sandy Land and their relationships with stand age [J]. Chin J Plan Ecolo, 2016, 40(4): 318-326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Sun Long-hua Jian Ling-cheng Lu Cun-fu Cao Li. Studies on the Prevention of Plant Cold-Resister from Peroxidation of Membrane Lipids[J]. Chin Bull Bot, 1994, 11(特辑): 168 -171 .
[2] . [J]. Chin Bull Bot, 1999, 16(增刊): 65 .
[3] Zhong Shi-qiang. Some Abnormalities in Flower of Siraitia[J]. Chin Bull Bot, 1984, 2(23): 79 .
[4] ZHANG Cai-Xi LI Zai-Long CHEN Da-Ming. Dynamic of Several Isozymes of Malus hupenhensis in Phase Change[J]. Chin Bull Bot, 2001, 18(01): 100 -104 .
[5] XIONG Zi-Xian. Genophyll Theory and Carp Theory[J]. Chin Bull Bot, 1998, 15(03): 73 -76 .
[6] ZHANG Shi-Gong LIU Guo-Dong LIU Geng-Ling. Plant Nutrition and Drought Resistance of Crops[J]. Chin Bull Bot, 2001, 18(01): 64 -69 .
[7] Hong Jian-ming;Yin Li-ping and Qiu Ze-sheng. Progress of Genetic Engineering for Plant Diseases Resistance[J]. Chin Bull Bot, 1997, 14(03): 40 -46 .
[8] Qifeng Wang, Qiong Yi, Kunzhi Li, Limei Chen, Yongxiong Yu. Construction of a Suppression Subtractive Hybridization Library for Stylosanthes guianensis Under Aluminum Stress and Expressed Sequence Tag Analysis[J]. Chin Bull Bot, 2010, 45(06): 679 -688 .
[9] Huang Tian-fang. The Preliminary Research into the Greening of the Lotus (nelumbo Nucifera Gaertn.) Seed Embryo ''[J]. Chin Bull Bot, 1995, 12(03): 48 -50 .
[10] Xuanyu Liu, Qingyun Wang, Shujun Liu, Songquan Song. Advances in the Genetic Transformation of Sorghum bicolor[J]. Chin Bull Bot, 2011, 46(2): 216 -223 .