植物生态学报 ›› 2006, Vol. 30 ›› Issue (3): 514-521.DOI: 10.17521/cjpe.2006.0068
收稿日期:
2005-04-04
接受日期:
2005-07-22
出版日期:
2006-05-30
发布日期:
2006-05-30
通讯作者:
阎秀峰
作者简介:
*E-mail: xfyan@mail.hl.cn.基金资助:
Received:
2005-04-04
Accepted:
2005-07-22
Online:
2006-05-30
Published:
2006-05-30
Contact:
YAN Xiu-Feng
摘要:
丛枝菌根(AM)是自然界中分布最为广泛、最为重要的一类菌根,许多研究已经观察到丛枝菌根真菌与植物次生代谢的相关性,丛枝菌根真菌能够直接或间接地影响植物的次生代谢过程。植物的次生代谢产物主要分为萜类物质、酚类物质和含氮化合物(主要是生物碱)三大类群,该文简要介绍了丛枝菌根真菌对这3类植物次生代谢产物的影响。丛枝菌根真菌与萜类物质代谢关系的研究比较细致和深入,有些工作已经从细胞及分子水平探讨其间的作用机制,如Blumenin、类胡萝卜素等。丛枝菌根真菌与酚类物质代谢关系的研究也比较深入,其中具有特殊功能的酚类物质——植保素、细胞壁酚酸、类黄酮/异类黄酮等倍受关注。目前有关丛枝菌根真菌与生物碱关系的研究相对较少,不过现有的研究表明,菌根的形成有助于生物碱积累。
赵昕, 阎秀峰. 丛枝菌根真菌对植物次生代谢的影响. 植物生态学报, 2006, 30(3): 514-521. DOI: 10.17521/cjpe.2006.0068
ZHAO Xin, YAN Xiu-Feng. EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGI ON PLANT SECONDARY METABOLISM. Chinese Journal of Plant Ecology, 2006, 30(3): 514-521. DOI: 10.17521/cjpe.2006.0068
[1] | Abu-Zeyad R, Khan AG, Khoo C (1999). Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine . Mycorrhiza, 9,111-117. |
[2] | Akiyama K, Hayashi H (2002). Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots. Bioscience Biotechnology and Biochemistry, 66,762-769. |
[3] |
Akiyama K, Matsuoka H, Hayashi H (2002). Isolation and identification of a phosphate deficiency-induced C-glycosyl flavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Molecular Plant-Microbe Interactions, 15,334-340.
DOI URL PMID |
[4] | Augé RM (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11,3-42. |
[5] |
Barker SJ, Tagu D (2000). The roles of auxins and cytokinins in mycorrhizal symbioses. Journal of Plant Growth Regulation, 19,144-154.
URL PMID |
[6] |
Blilou I, Ocampo JA, García-Garrido JM (2000). Induction of LTP (lipid transfer protein) and PAL (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. Journal of Experimental Botany, 51,1969-1977.
URL PMID |
[7] | Chen DH (陈大华), Ye HC (叶和春), Li GF (李国凤), Liu Y (刘彦) (2000). Advances in molecular biology of plant isoprenoid metabolic pathway. Acta Botanica Sinica (植物学报), 42,551-558. (in Chinese with English abstract) |
[8] | Chen XY (陈晓亚), Ye HC (叶和春) (1998). Secondary metabolism and its regulation in plants. In: Li CS (李承森) ed. Advances in Plant Sciences Vol.1 (植物科学进展(第一卷)), Higher Education Press, Beijing, 293-304. (in Chinese) |
[9] | Codignola A, Verotta L, Spanu P, Maffei M, Scannerini S, Bonfante-Fasolo P (1989). Cell wall bound-phenols in roots of versicular-arbuscular mycorrhizal plants. New Phytologist, 112,221-228. |
[10] | Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneiderpoetsch H, Bothe H (1993). Influence of versicular-arbuscular mycorrhiza on phytohormone balances in maize ( Zea mays L.) . Journal of Plant Physiology, 141,33-39. |
[11] | Dehne HW, Schønbeck F (1979). Investigations on the influence of endotrophic mycorrhiza on plant diseasea.Ⅱ.Phenol metabolism and lignification. Phytopathology, 95,210-216. |
[12] | Devi MC, Reddy MN (2002). Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regulation, 37,151-156. |
[13] | Dodd JC, Dougall TA, Clapp JP, Jeffries P (2002). The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK the reclamation platform created during the building of the Channel tunnel between France and the UK. Biodiversity and Conservation, 11,39-58. |
[14] | Fester T, Maier W, Strack D (1999). Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza, 8,241-246. |
[15] |
Fester T, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Fraser PD, Hause B, Strack D (2002a). Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta, 216,148-154.
DOI URL PMID |
[16] |
Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D (2002b). Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. Plant Cell Physiology, 43,256-265.
URL PMID |
[17] | Fraser LH, Grime JP (1999). Aphid fitness on 13 grass species: a test of plant defence theory. Canadian Journal of Botany, 77,1783-1789. |
[18] | Graham JH (2001). What do root pathogens see in mycorrhizas? New Phytologist, 149,357-359. |
[19] | Grandmaison J, Olah GM, van Calsteren MR, Furlan V (1993). Characterization and localization of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza, 3,155-164. |
[20] |
Gupta ML, Prasad A, Ram M, Kumar S (2002). Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint ( Mentha arvensis) under field conditions . Bioresource Technology, 81,77-79.
URL PMID |
[21] | Hamel C (1996). Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture. Agriculture, Ecosystems and Environment, 60,197-210. |
[22] |
Hans J, Hause B, Strack D, Walter MH (2004). Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiology, 134,614-624.
URL PMID |
[23] | Harborne JB (1988). Introduction to Ecological Biochemistry. 3rd edn. Academic Press, London. |
[24] |
Harrison MJ (1999). Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Review of Plant Physiology and Plant Molecular Biology, 50,361-389.
URL PMID |
[25] | Harrison MJ, Dixon RA (1993). Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Molecular Plant-Microbe Interactions, 6,643-654. |
[26] |
Hause B, Maier W, Miersch O, Kramell R, Strack D (2002). Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiology, 130,1213-1220.
DOI URL PMID |
[27] |
Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005). Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza . Plant Physiology, 137,1283-1301.
URL PMID |
[28] | Hooker JE, Jaizme-Vega M, Atkinson D (1994). Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H eds. Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Birkhauser-Verlag, Basel, Switzerland,191-200. |
[29] | Janardhanan KK, Abdul-Khaliq K (1995). Influence of vesicular arbuscular mycorrhizal fungi on growth and productivity of German chamomile in alkaline usar soil. In: Adholeya A, Singh S eds . italic>Mycorrhizae: Biofertilizers for the Future. Tata Energy Research Institute, New Delhi, India,410-412. |
[30] | Jones MD, Durall DM, Tinker PB (1998). A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera growth response, phosphorus uptake efficiency and external hyphal production . New Phytologist, 140,125-134. |
[31] | Klingner A, Bothe H, Wray V, Marner FJ (1995). Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry, 38,53-55. |
[32] | Krishna KR, Bgyaraj DJ (1984). Phenols in mycorrhizal roots of Arachis hypogaea. Experientia, 40,85-86. |
[33] | Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002). Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus . Journal of Plant Physiology, 159,1329-1339. |
[34] | Leng PS (冷平生), Su SC (苏淑钗), Li YH (李月华), Wang SS (王沙生), Jiang XN (蒋湘宁) (2001). Effects of fertilier and drought stress on growth as well as flavonol glycosides and terpene lactone content of Ginkgo biloba seedlings . Journal of Beijing Agriculture College (北京农学院学报), 16,32-37. (in Chinese with English abstract) |
[35] | Liu RJ (刘润进), Li XL (李晓林) (2000). Arbuscular Mycorrhiza and Application (丛枝菌根及其应用). Science Press, Beijing, 9. (in Chinese) |
[36] | Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A (2000). Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant Journal, 22,503-513. |
[37] |
Maier W, Peipp H, Schmidt J, Wray V, Strack D (1995). Levels of a terpenoid glycoside (blumenin) and cell wall-bound Phenolics in some cereal mycorrhizas. Plant Physiology, 109,465-470.
DOI URL PMID |
[38] | Maier W, Hammer K, Dammann U, Schulz B, Strack D (1997). Accumulation of sesquiterpenoid cyclohexenone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae. Planta, 202,26-42. |
[39] | Maier W, Schneider B, Strack D (1998). Biosynthesis of sesquiterpenoid cyclohexenone derivatives in mycorrhizal barley roots proceeds via the glyceraldehyde 3-phosphate/pyruvate pathway. Tetrahedron Letters, 39,521-524. |
[40] | Maier W, Schmidt J, Wray V, Walter MH, Strack D (1999). The arbuscular mycorrhizal fungus, Glomus intraradices, induces the accumulation of cyclohexenone derivatives in tobacco roots, Planta. 207,620-623. |
[41] | Massei G, Hartley SE, Bacon PJ (2000). Chemical and morphological variation of Mediterranean woody evergreen species: do plants respond to ungulate browsing? Journal of Vegetation Science, 11,1-8. |
[42] | Morandi D (1996). Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant and Soil, 185,241-251. |
[43] | Morandi D, Bailey JA, Gianinazzi-Pearson V (1984). Isoflavonoid accumulation in soybean roots infected with versicular-arbuscular mycorrhizal fungi. Physiological Plant Pathology, 24,357-364. |
[44] | Peipp H, Maier W, Schmidt J, Wray V, Strack D (1997). Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots. Phytochemistry, 44,581-587. |
[45] |
Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM (2004). Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry, 65,1925-1930.
DOI URL PMID |
[46] |
Poulin MJ, Belrhlid R, Piche Y, Chenevert R (1993). Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. Journal of Chemical Ecology, 19,2317-2327.
URL PMID |
[47] |
Rai M, Acharya D, Singh A, Varma A (2001). Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial . Mycorrhiza, 11,123-128.
URL PMID |
[48] |
Rojas-Andrade R, Cerda-Garcia-Rojas CM, Frias-Hernandez JT, Dendooven L, Olalde-Portugal V, Ramos-Valdivia AC (2003). Changes in the concentration of trigonelline in a semi-arid leguminous plant ( Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase . Mycorrhiza, 13,49-52.
DOI URL PMID |
[49] | Shelton AL (2000). Variable chemical defences in plants and their effects on herbivore behaviour. Evolutionary Ecology Research, 2,231-249. |
[50] | Singh DP, Srivastava JS, Bahadur A, Singh UP, Singh SK (2004). Arbuscular mycorrhizal fungi induced biochemical changes in pea ( Pisum sativum) and their effect on powdery mildew (Erysiphe pisi) Journal of Plant Diseases and Protection. Journal of Plant Diseases and Protection, 111,266-272. |
[51] | Smith SE, Read DJ (1997). Mycorrhizal Symbiosis 2nd edn Academic Press, San Diego. 164,233-289. |
[52] | Spanu P, Bonfante-Fasolo P (1988). Cell-wall-bound peroxidase activity in roots of mycorrhizal Allium porrum New Phytologist. 109,119-124. |
[53] | Stahl PD, Schuman GE, Frost SM, Williams SE (1998). Arbuscular mycorrhizae and water stress tolerance of wyoming big sagebrush seedlings. Soil Science Society of America Journal, 62,1309-1313. |
[54] |
Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003). Arbuscular mycorrhiza: biological, chemical, and molecular aspects. Journal of Chemical Ecology, 29,1955-1979.
URL PMID |
[55] | Varma A (1998). Mycorrhizae, the friendly fungi: what we know, what should we know and how do we know? In: Varma A ed. Mycorrhiza Manual. Springer, Berlin, Heidelberg, New York,1-24. |
[56] | Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piche Y (1998). Flavonoids and arbuscular mycorrhizal fungi. In: Manthey J, Buslig B eds. Flavonoids in the Living System. Plenum Press, New York,9-33. |
[57] | Vierheiling H, Gagnon H, Strack D, Maier W (2000). Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza, 9,291-293. |
[58] | Vierheilig H (2004). Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Canadian Journal of Botany, 82,1166-1176. |
[59] |
Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994). A vesicular arbuscular mycorrhizal fungus ( Glomus intraradices) induces a defense response in alfalfa roots . Plant Physiology, 104,683-689.
DOI URL PMID |
[60] |
Volpin H, Phillips DA, Okon Y, Kapulnik Y (1995). Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiology, 108,1449-1454.
DOI URL PMID |
[61] | Walter MH, Fester T, Strack D (2000). Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosythesis correlated with accumulation of the `yellow pigment' and other apocarotenoids. Plant Journal, 21,571-578. |
[62] | Walter MH, Hans J, Strack D (2002). Two distantly related genes encoding 1-deoxy-D-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant Journal, 31,243-254. |
[63] | Wei GT (魏改堂), Wang HG (汪洪钢) (1989). Effects of VA mycorrhizal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Datura stramonium L. Scientia Agricultura Sinica (中国农业科学), 22,56-61. (in Chinese with English abstract) |
[64] | Yan XF (阎秀峰) (2001). Ecology of plant secondary metab-olism. Acta Phytoecologica Sinica (植物生态学报), 25,639-640. (in Chinese with English abstract) |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[4] | 黄鹏, 林勇文, 张杰, 姚锦爱, 余德亿. 榕属植物特定挥发物决定榕管蓟马的寄主选择行为[J]. 植物生态学报, 2023, 47(7): 954-966. |
[5] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[6] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[7] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[8] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[9] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[10] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
[11] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[12] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[13] | 刘海跃, 李欣玫, 张琳琳, 王姣姣, 贺学礼. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2): 252-260. |
[14] | 陈宝明, 韦慧杰, 陈伟彬, 朱政财, 原亚茹, 张永隆, 蓝志刚. 外来入侵植物对土壤氮转化主要过程及相关微生物的影响[J]. 植物生态学报, 2018, 42(11): 1071-1081. |
[15] | 徐丽娇, 姜雪莲, 郝志鹏, 李涛, 吴照祥, 陈保冬. 丛枝菌根通过调节碳磷代谢相关基因的表达增强植物对低磷胁迫的适应性[J]. 植物生态学报, 2017, 41(8): 815-825. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19