植物生态学报 ›› 2006, Vol. 30 ›› Issue (5): 771-779.DOI: 10.17521/cjpe.2006.0099
收稿日期:
2005-05-09
接受日期:
2005-11-17
出版日期:
2006-05-09
发布日期:
2006-09-30
通讯作者:
牟长城
作者简介:
E-mail: mccnefu@yahoo.com基金资助:
SUN Zhi-Hu(), MU Chang-Cheng(
)
Received:
2005-05-09
Accepted:
2005-11-17
Online:
2006-05-09
Published:
2006-09-30
Contact:
MU Chang-Cheng
About author:
E-mail: mccnefu@yahoo.comE-mail of the first author: szhihunefu@163.com
摘要:
采用地统计学的变异函数分析方法定量研究了落叶松(Larix olgensis)纯林表层(0~10 cm)细根的空间异质性特征,利用地统计学的克里格内插法结合定积分,对落叶松纯林表层细根(<2 mm)的生物量进行了估测。结果表明:1)6种林龄(14~40 年)的落叶松人工纯林表层细根的变异函数曲线理论模型均为球状模型,空间变异主要是由结构性因素引起,且空间自相关程度均属中等以上(空间结构比>25%)。14、19、22、26、32、40年生的落叶松纯林表层细根的空间变异尺度分别为1.76、3.40、1.02、4.12、3.37和5.58 m。在所研究的林龄范围内,随林龄的增长,落叶松纯林表层细根的空间变异尺度近似呈直线增长(α=0.074 4)。2)非参数统计的成对样本符号检验结果表明,变异函数分析结果基础上的克里格内插法适用于落叶松纯林表层细根生物量的估计。利用此估计值,拟合其与位置坐标值之间的多元回归关系均为二元十次余弦级数多项式。利用此多项式,通过定积分的方法(积分区间为整块样地的大小),估计出14、19、22、26、32、40年生的落叶松纯林表层细根生物量分别为1.097 3、1.434 0、1.185 4、0.974 3、1.682 6、1.255 6 Mg·hm-2。3)在本次调查的林龄范围内(14~40年),落叶松纯林表层细根的现存量近似相等(α=0.037 3),土壤表层单株细根生物量与林龄之间呈极显著的指数增长关系(α=0.002)。4)采用地统计学的克里格空间插值,结合多元回归和定积分的方法,可以实现落叶松人工林表层细根生物量的准确估计。
孙志虎, 牟长城. 采用地统计学方法对落叶松人工纯林表层细根生物量的估计. 植物生态学报, 2006, 30(5): 771-779. DOI: 10.17521/cjpe.2006.0099
SUN Zhi-Hu, MU Chang-Cheng. THE ESTIMATE OF FINE ROOT BIOMASS IN UPPER SOIL LAYER OF LARIX OLGENSIS PLANTATION BY GEOSTATISTICS METHOD. Chinese Journal of Plant Ecology, 2006, 30(5): 771-779. DOI: 10.17521/cjpe.2006.0099
林龄 Stand age (a) | 平均胸径 DBH (cm) | 林木密度 Density (stem·hm-2) | 土层厚度 Thickness of soil (cm) | 最小株距 Minimum distance (m) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样地1 Plot 1 | 14 | 7.30 | 3 033 | 57.7 | 0.22 | ||||||||||||||||||||||||
样地2 Plot 2 | 19 | 10.41 | 3 122 | 33.7 | 0.14 | ||||||||||||||||||||||||
样地3 Plot 3 | 22 | 9.50 | 1 989 | 57.7 | 0.36 | ||||||||||||||||||||||||
样地4 Plot 4 | 26 | 14.99 | 1 722 | 85.7 | 0.41 | ||||||||||||||||||||||||
样地5 Plot 5 | 32 | 13.91 | 1 100 | 38.4 | 1.03 | ||||||||||||||||||||||||
样地6 Plot 6 | 40 | 21.24 | 556 | 38.9 | 2.14 |
表1 研究样地概况
Table 1 Plot characteristics
林龄 Stand age (a) | 平均胸径 DBH (cm) | 林木密度 Density (stem·hm-2) | 土层厚度 Thickness of soil (cm) | 最小株距 Minimum distance (m) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样地1 Plot 1 | 14 | 7.30 | 3 033 | 57.7 | 0.22 | ||||||||||||||||||||||||
样地2 Plot 2 | 19 | 10.41 | 3 122 | 33.7 | 0.14 | ||||||||||||||||||||||||
样地3 Plot 3 | 22 | 9.50 | 1 989 | 57.7 | 0.36 | ||||||||||||||||||||||||
样地4 Plot 4 | 26 | 14.99 | 1 722 | 85.7 | 0.41 | ||||||||||||||||||||||||
样地5 Plot 5 | 32 | 13.91 | 1 100 | 38.4 | 1.03 | ||||||||||||||||||||||||
样地6 Plot 6 | 40 | 21.24 | 556 | 38.9 | 2.14 |
平均 Mean | 最小值 Minimum | 最大值 Maximum | 观测数 Number | 标准差 SD | 峰度 Kurtosis | 偏度 Skewness | 变异系数 CV(%) | K-S值 K-S value | |
---|---|---|---|---|---|---|---|---|---|
样地1 Plot 1 | 126.49 | 0 | 448.98 | 82 | 86.528 | 2.079 | 0.972 | 68.41 | 0.086 4 |
样地2 Plot 2 | 135.39 | 0 | 671.20 | 82 | 121.170 | 3.342 | 1.218 | 89.50 | 0.148 6 |
样地3 Plot 3 | 124.55 | 0 | 494.33 | 82 | 99.442 | 3.216 | 1.312 | 79.84 | 0.109 4 |
样地4 Plot 4 | 146.16 | 0 | 648.53 | 70 | 142.583 | 1.552 | 1.317 | 97.55 | 0.160 4 |
样地5 Plot 5 | 161.00 | 0 | 412.70 | 82 | 101.472 | -0.366 | 0.104 | 63.03 | 0.102 2 |
样地6 Plot 6 | 176.04 | 0 | 757.37 | 82 | 170.204 | 1.345 | 1.185 | 96.68 | 0.150 5* |
样地1 Plot 11) | 10.22 | 0 | 21.19 | 82 | 4.733 | 0.586 | -0.731 | 46.33 | 0.148 6 |
样地6 Plot 61) | 10.97 | 0 | 27.52 | 82 | 7.508 | -0.829 | -0.098 | 68.44 | 0.148 2 |
表2 落叶松纯林表层(0~10 cm)细根生物量的描述统计分析结果(g·m-2)
Table 2 Descriptive statistics of fine root mass in soil surface layer (0-10 cm) of larch (g·m-2)
平均 Mean | 最小值 Minimum | 最大值 Maximum | 观测数 Number | 标准差 SD | 峰度 Kurtosis | 偏度 Skewness | 变异系数 CV(%) | K-S值 K-S value | |
---|---|---|---|---|---|---|---|---|---|
样地1 Plot 1 | 126.49 | 0 | 448.98 | 82 | 86.528 | 2.079 | 0.972 | 68.41 | 0.086 4 |
样地2 Plot 2 | 135.39 | 0 | 671.20 | 82 | 121.170 | 3.342 | 1.218 | 89.50 | 0.148 6 |
样地3 Plot 3 | 124.55 | 0 | 494.33 | 82 | 99.442 | 3.216 | 1.312 | 79.84 | 0.109 4 |
样地4 Plot 4 | 146.16 | 0 | 648.53 | 70 | 142.583 | 1.552 | 1.317 | 97.55 | 0.160 4 |
样地5 Plot 5 | 161.00 | 0 | 412.70 | 82 | 101.472 | -0.366 | 0.104 | 63.03 | 0.102 2 |
样地6 Plot 6 | 176.04 | 0 | 757.37 | 82 | 170.204 | 1.345 | 1.185 | 96.68 | 0.150 5* |
样地1 Plot 11) | 10.22 | 0 | 21.19 | 82 | 4.733 | 0.586 | -0.731 | 46.33 | 0.148 6 |
样地6 Plot 61) | 10.97 | 0 | 27.52 | 82 | 7.508 | -0.829 | -0.098 | 68.44 | 0.148 2 |
模型 Model | 块金值 Nugget (C0) | 基台值 Sill (C0+C) | 范围参数 Range parameter (a0) | 结构比 Proportion (C/(C0+C)) | 决定系数 Coefficient of determination (R2) | 显著性水平 Significant level (α) | |
---|---|---|---|---|---|---|---|
样地1 Plot 1 | 球状Spherical | 11.37 | 22.75 | 1.76 | 0.500 | 0.401 | 0.077 1 |
样地2 Plot 2 | 球状Spherical | 9 390.00 | 18 790.00 | 3.40 | 0.500 | 0.204 | 0.254 4 |
样地3 Plot 3 | 球状Spherical | 30.00 | 9 830.00 | 1.02 | 0.997 | 0.395 | 0.172 2 |
样地4 Plot 4 | 球状Spherical | 15 230.00 | 30 470.00 | 4.12 | 0.500 | 0.377 | 0.150 6 |
样地5 Plot 5 | 球状Spherical | 2 780.00 | 10 070.00 | 3.37 | 0.724 | 0.561 | 0.056 1 |
样地6 Plot 6 | 球状Spherical | 19.10 | 61.99 | 5.58 | 0.692 | 0.754 | 0.007 4 |
表3 落叶松纯林土壤表层(0~10 cm)细根生物量半方差分析结果
Table 3 The results of semivariance analysis for fine root mass of larch in soil surface layer (0-10 cm)
模型 Model | 块金值 Nugget (C0) | 基台值 Sill (C0+C) | 范围参数 Range parameter (a0) | 结构比 Proportion (C/(C0+C)) | 决定系数 Coefficient of determination (R2) | 显著性水平 Significant level (α) | |
---|---|---|---|---|---|---|---|
样地1 Plot 1 | 球状Spherical | 11.37 | 22.75 | 1.76 | 0.500 | 0.401 | 0.077 1 |
样地2 Plot 2 | 球状Spherical | 9 390.00 | 18 790.00 | 3.40 | 0.500 | 0.204 | 0.254 4 |
样地3 Plot 3 | 球状Spherical | 30.00 | 9 830.00 | 1.02 | 0.997 | 0.395 | 0.172 2 |
样地4 Plot 4 | 球状Spherical | 15 230.00 | 30 470.00 | 4.12 | 0.500 | 0.377 | 0.150 6 |
样地5 Plot 5 | 球状Spherical | 2 780.00 | 10 070.00 | 3.37 | 0.724 | 0.561 | 0.056 1 |
样地6 Plot 6 | 球状Spherical | 19.10 | 61.99 | 5.58 | 0.692 | 0.754 | 0.007 4 |
实测值Real data | 估测值Estimate | 显著性水平 α | |||||
---|---|---|---|---|---|---|---|
平均Mean | 标准差 SD | 峰度Kurtosis | 偏度Skewness | 平均Mean | 标准差 SD | ||
样地1 Plot 1 | 148.56 | 93.58 | -0.121 2 | 0.365 2 | 114.76 | 93.58 | 0.188 4 |
样地2 Plot 2 | 143.22 | 217.29 | 11.802 3 | 3.170 7 | 167.76 | 22.13 | 0.066 5 |
样地3 Plot 3 | 78.94 | 69.82 | 1.263 6 | 0.878 8 | 96.80 | 10.70 | 0.188 4 |
样地4 Plot 4 | 95.24 | 82.96 | -0.397 2 | 0.603 2 | 60.67 | 4.16 | 0.089 0 |
样地5 Plot 5 | 165.77 | 86.78 | 0.818 7 | 0.917 1 | 224.51 | 45.49 | 0.063 3 |
样地6 Plot 6 | 251.64 | 158.69 | -0.656 2 | 0.123 8 | 229.31 | 10.83 | 0.510 8 |
表4 落叶松纯林表层(0~10 cm)细根生物量实测值与克里格估测值之间的比较(n=37) (g·m-2)
Table 4 The comparison of original and estimated data for fine root mass in soil surface layer (0-10 cm) of larch (n=37) (g·m-2)
实测值Real data | 估测值Estimate | 显著性水平 α | |||||
---|---|---|---|---|---|---|---|
平均Mean | 标准差 SD | 峰度Kurtosis | 偏度Skewness | 平均Mean | 标准差 SD | ||
样地1 Plot 1 | 148.56 | 93.58 | -0.121 2 | 0.365 2 | 114.76 | 93.58 | 0.188 4 |
样地2 Plot 2 | 143.22 | 217.29 | 11.802 3 | 3.170 7 | 167.76 | 22.13 | 0.066 5 |
样地3 Plot 3 | 78.94 | 69.82 | 1.263 6 | 0.878 8 | 96.80 | 10.70 | 0.188 4 |
样地4 Plot 4 | 95.24 | 82.96 | -0.397 2 | 0.603 2 | 60.67 | 4.16 | 0.089 0 |
样地5 Plot 5 | 165.77 | 86.78 | 0.818 7 | 0.917 1 | 224.51 | 45.49 | 0.063 3 |
样地6 Plot 6 | 251.64 | 158.69 | -0.656 2 | 0.123 8 | 229.31 | 10.83 | 0.510 8 |
原始数据 Original data | 模型估计 Estimated data | ||||||
---|---|---|---|---|---|---|---|
平均值Mean1) (n=82) (Mg·hm-2) | 平均值Mean2) (n=119) (Mg·hm-2) | 差值 Difference | 细根生物量3) Fine root mass (Mg·hm-2) | 决定系数3) Determination coefficient (R2) | F值3) F value | ||
样地1 Plot 1 | 1.264 9 | 1.333 5 | 0.068 6 | 1.097 3 | 0.833 2 | 499.1 | |
样地2 Plot 2 | 1.353 9 | 1.378 3 | 0.024 4 | 1.434 0 | 0.867 9 | 656.7 | |
样地3 Plot 3 | 1.245 5 | 1.103 7 | -0.141 8 | 1.185 4 | 0.763 2 | 322.1 | |
样地4 Plot 4 | 1.461 6 | 1.285 5 | -0.176 1 | 0.974 3 | 0.946 2 | 1 318.0 | |
样地5 Plot 5 | 1.610 0 | 1.624 8 | 0.014 8 | 1.682 6 | 0.845 0 | 544.7 | |
样地6 Plot 6 | 1.760 4 | 1.995 5 | 0.235 1 | 1.255 6 | 0.952 1 | 1 986.1 |
表5 落叶松纯林表层(0~10 cm)细根生物量的估计结果
Table 5 The estimated data of fine root mass in soil surface layer (0-10 cm) of larch
原始数据 Original data | 模型估计 Estimated data | ||||||
---|---|---|---|---|---|---|---|
平均值Mean1) (n=82) (Mg·hm-2) | 平均值Mean2) (n=119) (Mg·hm-2) | 差值 Difference | 细根生物量3) Fine root mass (Mg·hm-2) | 决定系数3) Determination coefficient (R2) | F值3) F value | ||
样地1 Plot 1 | 1.264 9 | 1.333 5 | 0.068 6 | 1.097 3 | 0.833 2 | 499.1 | |
样地2 Plot 2 | 1.353 9 | 1.378 3 | 0.024 4 | 1.434 0 | 0.867 9 | 656.7 | |
样地3 Plot 3 | 1.245 5 | 1.103 7 | -0.141 8 | 1.185 4 | 0.763 2 | 322.1 | |
样地4 Plot 4 | 1.461 6 | 1.285 5 | -0.176 1 | 0.974 3 | 0.946 2 | 1 318.0 | |
样地5 Plot 5 | 1.610 0 | 1.624 8 | 0.014 8 | 1.682 6 | 0.845 0 | 544.7 | |
样地6 Plot 6 | 1.760 4 | 1.995 5 | 0.235 1 | 1.255 6 | 0.952 1 | 1 986.1 |
[1] | Bigwood DW, Inouye DW (1988). Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology, 69,497-507. |
[2] | Burker MK, Raynal DJ (1994). Fine root growth, phenology, production, and turnover in a northern hardwood forest ecosystem. Plant and Soil, 162,135-146. |
[3] | Buttner V, Leuschner C (1994). Spatial and temporal patterns of fine root abundance in a mixed oak-beech forest. Forest Ecology and Management, 70,11-21. |
[4] | Catchpole WR, Wheeler CJ (1992). Estimating plant biomass: a review of techniques. Australian Journal of Ecology, 17,121-131. |
[5] | Christien HE, Ettema DA (2002). Spatial soil ecology. Trends in Ecology & Evolution, 17,177-183. |
[6] | Du XJ (杜晓军), Liu CF (刘常富), Jin G (金罡), Shi XN (石小宁) (1998). Root biomass of main forest ecosystem in Changbai Mountain. Journal of Shenyang Agricultural University(沈阳农业大学学报), 29,229-232. (in Chinese with English abstract) |
[7] | Fang JY (方精云), Chen AP (陈安平), Zhao SQ (赵淑清), Ci LJ(慈龙骏) (2002). Estimating biomass carbon of China's forests: supplementary notes on report published in Science (291,2320-2322) by Fang et al. Acta Phytoecologica Sinica (植物生态学报), 26,243-249. (in Chinese with English abstract) |
[8] | Goovaerts P (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press , New York. |
[9] | Hahn G, Marschner H (1998). Cation concentrations of short roots of Norway spruce as affected by acid irrigation and liming. Plant and Soil, 199,23-27. |
[10] | Huang JH (黄建辉), Han XG (韩兴国), Chen LZ(陈灵芝) (1999). Advances in the research of (fine) root biomass in forest ecosystems. Acta Ecologica Sinica (生态学报), 19,270-277. (in Chinese with English abstract) |
[11] | Kurz WA, Apps MJ (1999). A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications, 9,526-547. |
[12] | Li H, Reynolds JF (1995). On definition and quantification of heterogeneity. Oikos, 73,280-284. |
[13] | Li LH (李凌浩), Lin P (林鹏), Xing XR (邢雪荣) (1998). Fine root biomass and production of Castanopsis eyrei forests in Wuyi Mountains . Chinese Journal of Applied Ecology(应用生态学报), 9,337-340. (in Chinese with English abstract) |
[14] | Liao LP (廖利平), Chen CY (陈楚莹), Zhang JW (张家武), Gao H (高洪) (1995). Turnover of fine roots in pure and mixed Cunninghamia lanceolata and Michelia macclurei forests . Chinese Journal of Applied Ecology (应用生态学报), 6,7-10. (in Chinese with English abstract) |
[15] | Liao LP (廖利平), Deng SJ (邓仕坚), Yu XJ (于小军), Han SJ (韩士杰) (2001). Growth, distribution and exudation of fine roots of Chinese fir trees grown in continuously cropped plantations. Acta Ecologica Sinica (生态学报), 21,569-573. (in Chinese with English abstract) |
[16] | Liao LY (廖兰玉), Ding MM (丁明懋), Zhang ZP (张祝平), Yi WM(蚁伟民), Guo GZ (郭贵仲), Huang ZL (黄忠良) (1993). Root biomass and its nitrogen dynamic of some communities in Dinghushan. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 17,56-60. (in Chinese with English abstract) |
[17] |
Liu X, Tyree MT (1997). Root carbohydrate reserves, mineral nutrient concentrations and biomass in a healthy and a declining sugar maple ( Acer saccharum) stand . Tree Physiology, 17,179-185.
URL PMID |
[18] |
Michael AC, Sandra B, Eileen HH (1997). Root biomass allocation in the world's upland forests. Oecologia, 111,1-11.
DOI URL PMID |
[19] | Mou P, Michell RJ, Jones RH (1997). Root distribution of two tree species under a heterogeneous nutrient environment. Journal of Applied Ecology, 34,645-656. |
[20] | Person H (1990). Methods of studying root dynamics in relation to nutrient cycling. In: Harrison AF, Ineson P, Heal OW eds. Nutrient Cycling in Terrestrial Ecosystems: Field Methods, Application and Interpretation. Elsevier Applied Science, London, New York. |
[21] | Rose MR (2001). Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. Forest Ecology and Management, 140,177-192. |
[22] | Sanford RLJ, Cuevas E (1996). Root growth and rhizosphere interactions in tropical forests. In: Mulkey SS, Chazdon RL, Smith AP eds. Tropical Forest Plant Ecophysiology. Chapman and Hall, New York, 268-300. |
[23] | Shan JP (单建平), Tao DL (陶大立), Wang M (王淼), Zhao SD (赵士洞) (1993). Fine roots turnover in a broad-leaved Korean pine forest of Changbai Mountain. Chinese Journal of Applied Ecology (应用生态学报), 4,241-245. (in Chinese with English abstract) |
[24] | Shan JP (单建平), Tao DL (陶大立) (1992). Overseas researches on tree fine root. Chinese Journal of Ecology (生态学杂志), 11(4),46-49. (in Chinese with English abstract) |
[25] |
Steele SJ, Gower ST, Vogel JG (1997). Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba,Canada. Tree Physiology, 17,577-587.
URL PMID |
[26] | Sun LA (孙力安), Liu GB (刘国彬), Liang YM (梁一民) (1994). Studies on determining methods of underground biomass with different diameter coring. Grassland of China (中国草地), (2),32-35. (in Chinese with English abstract) |
[27] | Wang JR, Zhong AL, Kimmins JP (2002). Biomass estimation errors associated with the use of published regression equations of paper birch and trembling aspen. Northern Journal of Applied Forestry, 19,128-136. |
[28] | Wang ZQ (王政权) (1999). Geostatistics and Its Application in Ecology (地统计学及在生态学中的应用). Science Press, Beijing. (in Chinese) |
[29] | Wang Z (王战) (1992). Larch Forest of China (中国落叶松林). China Forestry Publishing House, Beijing. (in Chinese) |
[30] | Yang YS (杨玉盛), Chen GS (陈光水), He ZM (何宗明), Chen YX (陈银秀), Huang RZ (黄荣珍) (2002). Distribution of fine roots in a mixed Cunninghamia lanceolata- Tsoongiodendron odorum plantation . Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 10,111-117. (in Chinese with English abstract) |
[31] | Yu WT (宇万太), Yu YQ (于永强) (2001). Advances in the research of underground biomass. Chinese Journal of Applied Ecology (应用生态学报), 12,927-932. (in Chinese with English abstract) |
[32] | Zhang XQ (张小全), Wu KH (吴可红), Dieter M (2000). A review of methods for fine-root production and turnover of trees. Acta Ecologica Sinica (生态学报), 20,875-883. (in Chinese with English abstract) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[5] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[6] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[7] | 高璐鑫, 兰天元, 赵志霞, 邓舒雨, 熊高明, 谢宗强, 申国珍. 中国中亚热带北部灌丛群落植物空间周转及其驱动因素[J]. 植物生态学报, 2022, 46(11): 1411-1421. |
[8] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[9] | 欧文慧, 刘亚恒, 李娜, 徐芷妍, 彭秋桐, 杨予静, 李中强. 柴达木盆地水生植物多样性格局及多假说验证[J]. 植物生态学报, 2021, 45(11): 1213-1220. |
[10] | 王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣. 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响[J]. 植物生态学报, 2020, 44(10): 1015-1027. |
[11] | 方文静, 蔡琼, 朱江玲, 吉成均, 岳明, 郭卫华, 张峰, 高贤明, 唐志尧, 方精云. 华北地区落叶松林的分布、群落结构和物种多样性[J]. 植物生态学报, 2019, 43(9): 742-752. |
[12] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[13] | 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应[J]. 植物生态学报, 2019, 43(4): 320-330. |
[14] | 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系[J]. 植物生态学报, 2019, 43(1): 27-36. |
[15] | 孟令君, 姚杰, 秦江环, 范春雨, 张春雨, 赵秀海. 吉林蛟河针阔混交林乔木幼苗组成及其密度格局影响因素[J]. 植物生态学报, 2018, 42(6): 653-662. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19