• •    

内蒙大兴安岭地区落叶松生态系统氧同位素日变化及蒸散定量区分

李佳泽, 贾德彬, 郝玉胜, 郝帅, 尚紫琴, 纪明宇   

  1. 内蒙古农业大学, 内蒙古自治区 010010 中国
  • 收稿日期:2025-02-26 修回日期:2025-05-06 接受日期:2025-06-30

Diurnal Variation of Oxygen Isotopes and Quantitative Partitioning of Evapotranspiration in the Larix gmelinii Ecosystem in the Greater Khingan Mountains of Inner Mongolia

李 佳泽, 贾 德彬, 郝 玉胜, 郝 帅, 尚 紫琴, 纪 明宇   

  1. , 010010, China
  • Received:2025-02-26 Revised:2025-05-06 Accepted:2025-06-30

摘要: 为了更加深入全面地了解大兴安岭森林生态系统大气水汽浓度、水汽同位素以及蒸散发各组分在植物不同生长季和日尺度上的变化规律,本研究通过水汽稳定同位素分析仪对不同高度水汽浓度及同位素进行了高频观测,同时采用真空提取和液态水同位素分析仪测定植物和土壤δ18O值。利用ISS和NSS理论,对不同时期的落叶松生态系统进行蒸散发组分拆分与比较。结果表明:在落叶松生长旺盛期(7月~8月)大气水汽浓度和水汽同位素富集,而落叶松落叶期贫化;两者在日尺度的变化上则较为复杂,呈现高-低-高的“V”型循环。在日尺度变化上,土壤蒸发水汽同位素组成的变化范围为-27.15‰~-18.31‰,生态系统蒸散发水汽同位素组成的变化范围为-15.48‰~-8.05‰,两者均呈现单峰型变化趋势。同位素稳态(ISS)下植物蒸腾水汽氧同位素组成为-10.83‰~-5.31‰,而同位素非稳态(NSS)下植物蒸腾水汽氧同位素组成为-12.21‰~-6.63‰,其中在13点~17点时间段上差异最小,蒸腾占比最为接近。总体上,植物蒸腾量对蒸散量的贡献率FT-ISS为69.48%~85.08%,FT-NSS为76.38%~91.05%,这表明研究区土壤蒸发耗水远小于植被蒸腾耗水,植被蒸腾在森林生态系统蒸散发中起主导作用。

关键词: 稳定同位素, 大气水汽, 落叶松, 蒸散发, 非稳态假设

Abstract: Aims To comprehensively investigate the dynamics of atmospheric water vapor concentration, water vapor isotopes, and evapotranspiration components in the forest ecosystem of the Greater Khingan Mountains across different plant growing seasons and at a diurnal scale. Methods This study conducted high-frequency monitoring of water vapor concentrations and isotopes at different heights using a stable water vapor isotope analyzer, while also determining the δ18O values of plants and soil using vacuum extraction and a liquid water isotope analyzer. Additionally, evapotranspiration components in the Larix gmelinii ecosystem were partitioned and compared across different periods by applying Isotope Steady-State (ISS) and Non-Steady-State (NSS) theories. Important findings During the peak growing season of Larix gmelinii (July~August), atmospheric water vapor concentration and isotopic enrichment were elevated, whereas depletion occurred during the leaf-fall period. Diurnal variations exhibited a complex "V-shaped" cycle with high-low-high fluctuations. On the diurnal scale, the δ¹⁸O of soil evaporation vapor ranged from −27.15‰ to −18.31‰, while that of ecosystem evapotranspiration vapor varied between −15.48‰ and −8.05‰, both demonstrating unimodal trends. Under Isotope Steady-State (ISS) conditions, the δ¹⁸O of plant transpiration vapor spanned −10.83‰ to −5.31‰, contrasting with −12.21‰ to −6.63‰ under Non-Steady-State (NSS) conditions. Minimal divergence between ISS and NSS estimates occurred during 13:00~17:00, where transpiration contributions showed closest alignment. Overall, the transpiration contribution to evapotranspiration was 69.48%~85.08% (ISS) and 76.38%~91.05% (NSS), indicating substantially lower soil evaporation compared to vegetation transpiration, with plant transpiration dominating the forest ecosystem's evapotranspiration.

Key words: stable isotope, water vapor, larix gmelini, evapotranspiration, Non-Steady-State assumption