植物生态学报 ›› 2011, Vol. 35 ›› Issue (5): 500-511.DOI: 10.3724/SP.J.1258.2011.00500
收稿日期:
2010-11-18
接受日期:
2011-01-31
出版日期:
2011-11-18
发布日期:
2011-06-07
通讯作者:
桑卫国
作者简介:
* E-mail: swg@ibcas.ac.cn
LI Guang-Qi1,2, BAI Fan1, SANG Wei-Guo1,*()
Received:
2010-11-18
Accepted:
2011-01-31
Online:
2011-11-18
Published:
2011-06-07
Contact:
SANG Wei-Guo
摘要:
用树木年代学方法研究了近50年来气候变化对长白山自然保护区两种广泛分布的重要乔木树种红松(Pinus koraiensis)和鱼鳞云杉(Picea jezoensis var. komarovii)分布上限树木径向生长的影响, 发现红松年轮宽度具有与温度升高相一致的趋势, 而鱼鳞云杉年轮宽度则出现随温度升高而下降的“分离现象”。对水热条件的正响应是分布上限红松年表与温度保持一致的关键: 生长季的温度和降水的增加对上限红松的生长有促进作用, 且二者对树木生长的有利效应有相互促进的现象; 生长季的延长也有利于红松的生长。升温导致的水分胁迫是造成上限分布的鱼鳞云杉年轮宽度与温度变化趋势相反的重要因素: 分布上限的鱼鳞云杉年表与大多数温度指标均呈负相关关系; 随着温度升高, 年表与年降水量尤其是春季降水量的相关性逐渐由负转正; 各月的高温以及生长季中后期的少雨是形成上限鱼鳞云杉窄轮的主要气候因素, 而较低的各月温度以及生长季后期充足的降水则有利于上限鱼鳞云杉的生长; 此外, 生长季长度没有变化也可能是造成鱼鳞云杉年表序列对温度变化敏感性下降的重要因素。
李广起, 白帆, 桑卫国. 长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应. 植物生态学报, 2011, 35(5): 500-511. DOI: 10.3724/SP.J.1258.2011.00500
LI Guang-Qi, BAI Fan, SANG Wei-Guo. Different responses of radial growth to climate warming in Pinus koraiensis and Picea jezoensis var. komarovii at their upper elevational limits in Changbai Mountain, China. Chinese Journal of Plant Ecology, 2011, 35(5): 500-511. DOI: 10.3724/SP.J.1258.2011.00500
图1 松江气象站1958-2006年年平均气温和降水量的变化情况。短划线为气象资料的分段线性拟合趋势线。
Fig. 1 Variation of annual average temperature and total precipitation of Songjiang meteorological station in 1958- 2006. Dash is piecewise fitted linear regression line of the meteorological data.
图2 红松和鱼鳞云杉分布上限年表序列及样本量。黑实线代表年表序列, 短划线代表样本量。
Fig. 2 Tree ring-width chronologies and number of the core sampled of Pinus koraiensis and Picea jezoensis var. komarovii in the upper-limit region. Black solid line is the chronology, and the dash is the number of the core sampled.
红松 Pinus koraiensis | 鱼鳞云杉 Picea jezoensis var. komarovii | |
---|---|---|
海拔 Elevation | 1 300 m | 1 800 m |
样本量 Total number of series | 39 | 36 |
年表区间 Full chronology interval | 1805-2006 | 1757-2006 |
子样本信号强度大于0.85的年表区间 Chronology interval (SSS > 0.85) | 1852-2006 (14) | 1807-2006 (13) |
平均敏感度 Mean sensitivity | 0.11 | 0.13 |
均方差 Standard deviation | 0.173 | 0.281 |
树与树间平均相关系数 Mean correlations among all radii | 0.296 | 0.309 |
一阶自相关系数 First order autocorrelation | 0.687 | 0.816 |
信噪比 Signal-to-noise ratio | 12.639 | 11.192 |
样本量总体代表性 Express population signal | 0.927 | 0.918 |
第一主成分所占方差量 Variance in first eigenvector | 0.343 3 | 0.367 8 |
表1 红松和鱼鳞云杉分布上限年表统计信息
Table 1 Statistical characters of Pinus koraiensis and Picea jezoensis var. komarovii chronologies in the upper-limit region
红松 Pinus koraiensis | 鱼鳞云杉 Picea jezoensis var. komarovii | |
---|---|---|
海拔 Elevation | 1 300 m | 1 800 m |
样本量 Total number of series | 39 | 36 |
年表区间 Full chronology interval | 1805-2006 | 1757-2006 |
子样本信号强度大于0.85的年表区间 Chronology interval (SSS > 0.85) | 1852-2006 (14) | 1807-2006 (13) |
平均敏感度 Mean sensitivity | 0.11 | 0.13 |
均方差 Standard deviation | 0.173 | 0.281 |
树与树间平均相关系数 Mean correlations among all radii | 0.296 | 0.309 |
一阶自相关系数 First order autocorrelation | 0.687 | 0.816 |
信噪比 Signal-to-noise ratio | 12.639 | 11.192 |
样本量总体代表性 Express population signal | 0.927 | 0.918 |
第一主成分所占方差量 Variance in first eigenvector | 0.343 3 | 0.367 8 |
图3 1958-2006年分布上限两树种年表序列与年平均气温的一致性分析。黑实线代表年表序列, 灰实线代表年平均气温, 短划线为相应时间序列的三次幂函数拟合趋势线。
Fig. 3 Consistency analysis between ring-width chronologies and annual average temperature of two species in upper-limit area in 1958-2006. Black solid line stands for the ring-width chronology, and the gray solid line for the annual average temperature. Dash line is the trend line of each chronology with the method of cubic power function.
气温 Air temperature | 降水量 Precipitation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
年 Year | 秋季 Autumn | 冬季 Winter | 春季 Spring | 夏季Summer | 年总量 Total of the year | 秋季 Autumn | 冬季 Winter | 春季 Spring | 夏季 Summer | ||
红松 Pinus koraiensis | 0.05 | -0.11 | 0.01 | 0.09 | 0.14 | 0.23 | 0.05 | -0.08 | -0.04 | 0.31* | |
鱼鳞云杉 Picea jezoensis var. komarovii | -0.42** | -0.22 | -0.39** | -0.33* | -0.34* | -0.02 | 0.03 | -0.07 | -0.19 | 0.12 |
表2 1958-2006年两树种分布上限年表与气象因子的相关分析
Table 2 Correlation between tree-ring-width chronology and meteorology factors of two species in upper-limit area in 1958-2006
气温 Air temperature | 降水量 Precipitation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
年 Year | 秋季 Autumn | 冬季 Winter | 春季 Spring | 夏季Summer | 年总量 Total of the year | 秋季 Autumn | 冬季 Winter | 春季 Spring | 夏季 Summer | ||
红松 Pinus koraiensis | 0.05 | -0.11 | 0.01 | 0.09 | 0.14 | 0.23 | 0.05 | -0.08 | -0.04 | 0.31* | |
鱼鳞云杉 Picea jezoensis var. komarovii | -0.42** | -0.22 | -0.39** | -0.33* | -0.34* | -0.02 | 0.03 | -0.07 | -0.19 | 0.12 |
图4 年表序列与月气象数据响应函数分析。*, 在0.05的水平上显著相关。p表示前一年, 如p8指前一年8月。
Fig. 4 Response function analysis between ring-width chronology and monthly meteorological data. *, correlation is significant at the 0.05 level (2-tailed). p stands for the previous year. For instance, p8 means previous August.
图5 分布上限两树种年表序列与气象数据的滑动相关分析。实线表示年表序列与温度的滑动相关, 短划线表示年表序列与降水的滑动相关, 滑动窗口为20年, 横坐标表示滑动窗口的起始年。
Fig. 5 Moving correlation between ring-width chronology and meteorological data of two species in upper-limit area. Solid line presents the changing of temperature correlation, and the dash line is for that of precipitation. Moving window is 20 years, and the X-coordinate is the beginning year of moving window.
图6 年表特征年份气象要素分析。特征年分析的对象是相应年份的标准化月距平的平均值, 窄轮表示年表序列中最窄的12年, 宽轮表示年表序列中最宽12年, 横坐标表示一年中的12个月, 对应的年分别表示年平均气温和年降水量, 纵坐标是标准化月距平的平均值, 误差线表示的是相应特征年间标准化月距平的标准误差。p表示前一年。
Fig. 6 Pointer year analysis for the pointer years’ climate information. The object of pointer year is the average of standardized anomalies of the pointer years. N stands for the years of the narrowest 12 rings, and W is the years of the widest 12 rings. In the x-coordinate, number is the month, and year is the annual average temperature or the annual precipitation. The y-coordinate is the average of standardized anomalies. Err bar is the standard error for the pointer years’ anomalies. p stands for the prerious year.
图7 1958-2006年两树种分布上限区域有效年积温和生长季长度的变化。实心点线代表年积温, 空心点线代表生长季长度, 黑短划线为年积温的线性拟合, 灰短划线是生长季长度的线性拟合。
Fig. 7 Variation of effective accumulated temperature and growing season length in the upper-limit of two tree species in 1958-2006. Solid dot and line is the accumulated temperature, and hollow dot and line is the growing season length. Black dash is the linear fit for the accumulated temperature, and the gray one is the fit for growing season.
[1] |
Barber VA, Juday GP, Finney BP (2000). Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 405, 668-673.
DOI URL PMID |
[2] |
Biondi F, Waikul K (2004). DendroClim2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers and Geosciences, 30, 303-311.
DOI URL |
[3] |
Briffa KR, Osborn TJ, Schweingruber FH (2004). Large-scale temperature inferences from tree rings: a review. Global and Planetary Change, 40, 11-26.
DOI URL |
[4] |
Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998). Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 391, 678-682.
DOI URL |
[5] |
Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005). A 1052-year tree-ring proxy for alpine summer temperatures. Climate Dynamics, 25, 141-153.
DOI URL |
[6] |
Büntgen U, Frank DC, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006). Growth/climate response shift in a long subalpine spruce chronology. Trees-Structure and Function, 20, 99-110.
DOI URL |
[7] |
Carrer M, Urbinati C (2006). Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytologist, 170, 861-872.
DOI URL PMID |
[8] |
Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533.
DOI URL PMID |
[9] |
Clark DA, Piper SC, Keeling CD, Clark DB (2003). Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000. Proceedings of the National Academy of Sciences of the United States of America, 100, 5852-5857.
URL PMID |
[10] |
Cook ER, Esper J, D’Arrigo RD (2004). Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years. Quaternary Science Reviews, 23, 2063-2074.
DOI URL |
[11] | Cook ER, Holmes RL (1986). Users Manual for Program Arstan, Laboratory of Tree-Ring Research. University of Arizona Tucson. |
[12] |
Cook ER, Krusic PJ, Jones PD (2003). Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. International Journal of Climatology, 23, 707-732.
DOI URL |
[13] |
D’Arrigo R, Jacoby G, Frank D, Pederson N, Cook E, Buckley B, Nachin B, Mijiddorj R, Dugarjav C (2001). 1738 years of Mongolian temperature variability inferred from a tree-ring width chronology of Siberian pine. Geophysical Research Letters, 28, 543-546.
DOI URL |
[14] | D’Arrigo RD, Kaufmann RK, Davi N, Jacoby GC, Laskowski C, Myneni RB, Cherubini P (2004). Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochemical Cycles, 18, GB3021, doi: 10.1029/2004GB002249. |
[15] |
Driscoll WW, Wiles GC, D’Arrigo RD, Wilmking M (2005). Divergent tree growth response to recent climatic warming, Lake Clark National Park and Preserve, Alaska. Geophysical Research Letters, 32, L20703, doi: 10.1029/ 2005GL024258.
DOI URL |
[16] |
Dulamsuren C, Hauck M, Khishigjargal M, Leuschner HH, Leuschner C (2010). Diverging climate trends in Mongol- ian taiga forests influence growth and regeneration of Larix sibirica. Oecologia, 163, 1091-1102.
DOI URL PMID |
[17] |
Fan ZX, Bräuning A, Tian QH, Yang B, Cao KF (2010). Tree ring recorded May-August temperature variations since A.D. 1585 in the Gaoligong Mountains, southeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 94-102.
DOI URL |
[18] |
Frank D, Esper J (2005). Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia, 22, 107-121.
DOI URL |
[19] | Fritts HC (1976). Tree Rings and Climate. Academic Press, London. |
[20] |
Gou X, Chen F, Yang M, Li J, Peng J, Jin L (2005). Climatic response of thick leaf spruce (Picea crassifolia) tree-ring width at different elevations over Qilian Mountains, northwestern China. Journal of Arid Environments, 61, 513-524.
DOI URL |
[21] | Holmes RL (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-78. |
[22] | Holmes RL, Adams RK, Fritts HC (1986). Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin, with Procedures Used in the Chronology Development Work, Including Users Manuals for Computer Programs Cofecha and Arstan. Chronology Series VI. Laboratory of Tree-Ring Research, University of Arizona, Tucson, 182. |
[23] |
Jacoby GC, D’Arrigo RD (1995). Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles, 9, 227-234.
DOI URL |
[24] | Li MC (李明财), Luo TX (罗天祥), Zhu JJ (朱教君), Kong GQ (孔高强) (2008). Advances in formation mechanism of alpine timberline and associated physio-ecological characteristics of plants. Acta Ecologica Sinica (生态学报), 28, 5582-5591. (in Chinese with English abstract) |
[25] | Melvin TM (2004). Historical Growth Rates and Changing Climatic Sensitivity of Boreal Conifers. PhD dissertation, University of East Anglia, UK. |
[26] | Meyer FD (1998-1999). Pointer year analysis in dendro- ecology: a comparison of methods. Dendrochronologia, 16-17, 193-204. |
[27] |
Qian W, Qin A (2006). Spatial-temporal characteristics of temperature variation in China. Meteorology and Atmospheric Physics, 93, 1-16.
DOI URL |
[28] |
Qian WH, Zhu YF (2001). Climate change in China from 1880 to 1998 and its impact on the environmental condition. Climatic Change, 50, 419-444.
DOI URL |
[29] |
Ries L, Fletcher RJ, Battin J, Sisk TD (2004). Ecological responses to habitat edges: mechanisms, models, and variability explained. Annual Review of Ecology Evolution and Systematics, 35, 491-522.
DOI URL |
[30] |
Salzer MW, Kipfmueller KF (2005). Reconstructed tempera- ture and precipitation on a millennial time scale from tree-rings in the southern Colorado Plateau, USA. Climatic Change, 70, 465-487.
DOI URL |
[31] | Shao XM (邵雪梅), Wu XD (吴祥定) (1997). Reconstruction of climate change on Changbai Mountain, northeast China using tree-ring data. Quaternary Sciences (第四季研究), (1), 76-85. (in Chinese with English abstract) |
[32] | Stokes M, Smiley TL (1996). An Introduction to Tree-Ring Dating. University of Arizona Tucson. |
[33] |
Touchan R, Akkemik Ü, Hughes MK, Erkan N (2007). May-June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings. Quaternary Research, 68, 196-202.
DOI URL |
[34] |
van der Maarel E (1990). Ecotones and ecoclines are different. Journal of Vegetation Science, 1, 135-138.
DOI URL |
[35] |
Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002). Ecological responses to recent climate change. Nature, 416, 389-395.
DOI URL PMID |
[36] | Wang M (王淼), Bai SJ (白淑菊), Tao DL (陶大力), Shan JP (单建平) (1995). Effect of rise in air-temperature on tree ring growth of forest on Changbai Mountain. Chinese Journal of Applied Ecology (应用生态学报), 6, 128-132. (in Chinese with English abstract) |
[37] |
Wilmking M, Juday GP, Barber VA, Zald HSJ (2004). Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology, 10, 1724-1736.
DOI URL |
[38] |
Wilson R, D’Arrigo R, Buckley B, Büntgen U, Esper J, Frank D, Luckman B, Payette S, Vose R, Youngblut D (2007). A matter of divergence: tracking recent warming at hemis- pheric scales using tree ring data. Journal of Geophysical Research, 112, D17103, doi: 10.1029/2006JD008318.
DOI URL |
[39] | Wilson RJS, Luckman BH (2002). Tree-ring reconstruction of maximum and minimum temperatures and the diurnal temperature range in British Columbia, Canada. Dendro- chronologia, 20, 257-268. |
[40] | Yonenobu H, Eckstein D (2006). Reconstruction of early spring temperature for central Japan from the tree-ring widths of Hinoki cypress and its verification by other proxy records. Geophysical Research Letters, 33, L10701, doi: 10.1029/2006GL026170. |
[41] | Yu DP, Gu HY, Wang JD, Wang QL, Dai LM (2005). Relationships of climate change and tree ring of Betula ermanii tree line forest in Changbai Mountain. Chinese Journal of Forestry Research, 16, 187-192. |
[42] | Yu DP (于大炮), Wang SZ (王顺忠), Tang LN (唐立娜), Dai LM (代力民), Wang QL (王庆礼), Wang SX (王绍先) (2005). Relationship between tree-ring chronology of Larix olgensis in Changbai Mountains and the climat change. Chinese Joural of Applied Ecology (应用生态学报), 16, 14-20. (in Chinese with English abstract) |
[43] | Zhang HS (张寒松), Han SJ (韩士杰), Li YW (李玉文), Zhang JH (张军辉) (2007). Reconstruction of temporal variations of precipitation in Changbai Mountain area over past 240 years by using tree-ring width data. Chinese Journal of Ecology (生态学杂志), 26, 1924-1929. (in Chinese with English abstract) |
[44] |
Zhang YX, Wilmking M (2010). Divergent growth responses and increasing temperature limitation of Qinghai spruce growth along an elevation gradient at the northeast Tibet Plateau. Forest Ecology and Management, 260, 1076-1082.
DOI URL |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[7] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[8] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[9] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[10] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[11] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[12] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[13] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[14] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[15] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19