植物生态学报 ›› 2009, Vol. 33 ›› Issue (4): 728-738.DOI: 10.3773/j.issn.1005-264x.2009.04.011
涂利华, 胡庭兴*(), 黄立华, 李仁洪, 戴洪忠, 雒守华, 向元彬
收稿日期:
2009-01-07
修回日期:
2009-03-25
出版日期:
2009-01-07
发布日期:
2009-07-30
通讯作者:
胡庭兴
作者简介:
*(hutx001@yahoo.com.cn)基金资助:
TU Li-Hua, HU Ting-Xing*(), HUANG Li-Hua, LI Ren-Hong, DAI Hong-Zhong, LUO Shou-Hua, XIANG Yuan-Bin
Received:
2009-01-07
Revised:
2009-03-25
Online:
2009-01-07
Published:
2009-07-30
Contact:
HU Ting-Xing
摘要:
2007年11月至2008年11月, 对华西雨屏区苦竹(Pleioblastus amarus)人工林进行了模拟氮沉降试验, 氮沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低氮(5 g N·m-2·a-1)、中氮(15 g N·m-2·a-1)和高氮(30 g N·m-2·a-1)。每月下旬, 采用红外CO2分析法测定土壤呼吸速率, 并定量地对各处理施氮(NH4NO3)。结果表明: 2008年试验地氮沉降量为8.241 g·m-2, 超出该地区氮沉降临界负荷。在生长季节, 苦竹林根呼吸占总土壤呼吸的60%左右。模拟氮沉降促进了苦竹林土壤呼吸速率, 使苦竹林土壤每年向大气释放的CO2增加了9.4%~28.6%。在大时间尺度上(如1 a), 土壤呼吸主要受温度的影响。2008年6~10月, 土壤呼吸速率24 h平均值均表现为: 对照<低氮<中氮<高氮。氮沉降处理1 a后, 土壤微生物呼吸速率和土壤微生物生物量碳、氮增加, 并且均与氮沉降量具有相同趋势。各处理土壤呼吸速率与10 cm土壤温度、月平均气温呈极显著指数正相关关系, 利用温度单因素模型可以解释土壤呼吸速率的大部分。模拟氮沉降使得土壤呼吸Q10值增大, 表明氮沉降可能增强了土壤呼吸的温度敏感性。在氮沉降持续增加和全球气候变暖的背景下, 氮沉降和温度的共同作用可能使得苦竹林向大气中排放的CO2增加。
涂利华, 胡庭兴, 黄立华, 李仁洪, 戴洪忠, 雒守华, 向元彬. 华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应. 植物生态学报, 2009, 33(4): 728-738. DOI: 10.3773/j.issn.1005-264x.2009.04.011
TU Li-Hua, HU Ting-Xing, HUANG Li-Hua, LI Ren-Hong, DAI Hong-Zhong, LUO Shou-Hua, XIANG Yuan-Bin. RESPONSE OF SOIL RESPIRATION TO SIMULATED NITROGEN DEPOSITION IN PLEIOBLASTUS AMARUS FOREST, RAINY AREA OF WEST CHINA. Chinese Journal of Plant Ecology, 2009, 33(4): 728-738. DOI: 10.3773/j.issn.1005-264x.2009.04.011
月份 Month | 月降水量 Monthly precipitation (mm) | 氮沉降量 Nitrogen deposition (g·m-2) |
---|---|---|
1 | 50.0 | 0.521 |
2 | 72.8 | 0.758 |
3 | 136.6 | 0.533 |
4 | 223.6 | 0.872 |
5 | 145.3 | 0.617 |
6 | 155.2 | 1.099 |
7 | 227.4 | 0.777 |
8 | 232.2 | 0.563 |
9 | 223.8 | 0.322 |
10 | 187.9 | 1.000 |
11 | 73.7 | 0.645 |
12 | 29.5 | 0.535 |
合计 Total | 1 758.0 | 8.241 |
表1 洪雅县柳江镇苦竹岗2008年氮沉降量(湿沉降)
Table 1 Nitrogen deposition (wet deposition) of Kuzhugang, Liujiang town, Hongya county, Sichuan Province, China in 2008
月份 Month | 月降水量 Monthly precipitation (mm) | 氮沉降量 Nitrogen deposition (g·m-2) |
---|---|---|
1 | 50.0 | 0.521 |
2 | 72.8 | 0.758 |
3 | 136.6 | 0.533 |
4 | 223.6 | 0.872 |
5 | 145.3 | 0.617 |
6 | 155.2 | 1.099 |
7 | 227.4 | 0.777 |
8 | 232.2 | 0.563 |
9 | 223.8 | 0.322 |
10 | 187.9 | 1.000 |
11 | 73.7 | 0.645 |
12 | 29.5 | 0.535 |
合计 Total | 1 758.0 | 8.241 |
图1 各处理土壤呼吸速率月动态 ck、l、m、h分别表示对照(0 g N·m-2·a-1)、低氮 (5 g N·m-2·a-1)、中氮 (15 g N·m-2·a-1)和高氮(30 g N·m-2·a-1) ck, l, m, and h denote control (0 g N·m-2·a-1), low nitrogen (5 g N·m-2·a-1), medium nitrogen (15 g N·m-2·a-1), high nitrogen (30 g N·m-2·a-1), respectively *表示至少有两个处理之间差异显著 Single asterisk denote that at least two treatment means were significantly different **表示至少有3个处理两两之间差异显著(one-way ANOVA, p<0.05, n=9) Double asterisk denote that at least three treatment means were significantly different in every two (one-way ANOVA, p<0.05, n=9)
Fig. 1 Monthly dynamics of soil respiration rate
图3 各处理土壤微生物呼吸 图中不同字母表示差异显著(one-way ANOVA和Fisher’s LSD, p<0.05, n=12) Different letters denote treatment means were significantly different (one-way ANOVA and Fisher’s LSD, p<0.05, n=12) ck、l、m、h: 同图1 See Fig. 1
Fig. 3 Soil microbial respiration in four treatments
图4 各处理土壤微生物生物量C、N 图中不同字母表示差异显著(one-way ANOVA和Fisher’s LSD, p<0.05, n=4) Different letters denote that treatment means were significantly different (one-way ANOVA and Fisher’s LSD, p<0.05, n=3) ck、l、m、h: 同图1 See Fig. 1
Fig. 4 Soil microbial biomass carbon and nitrogen in four treatments
图5 苦竹林根呼吸对土壤呼吸的贡献 柱形图上方数值表示根呼吸对总土壤呼吸的贡献 The numbers of the column top denote contribution rates of root respiration to total soil respiration I: 根呼吸速率 Root respiration rate II: 去根呼吸速率 Root-free respiration rate
Fig. 5 Contribution of root respiration to soil respiration in Pleioblastus amarus forest
图6 土壤呼吸速率与10 cm土壤温度的关系 ck, l, m, h: 见图1 See Fig. 1 RS: 土壤呼吸 Respiration of soil
Fig. 6 Relationships between soil respiration rate and the soil temperature at 10 cm depth
[1] |
Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989). Nitrogen saturation in northern forest ecosystems— hypotheses and implications. BioScience, 39, 378-386.
DOI URL |
[2] | Berg B, Staaf H (1980). Decomposition rate and chemical changes of scots pine needle litter Ⅱ. Influence of chemical composition. Ecological Bulletin, 32, 373-390. |
[3] |
Bobbink R, Hornung M, Roelofs JGM (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717-738.
DOI URL |
[4] | Chapin MC (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York, 159-166. |
[5] |
Chen BY (陈宝玉), Liu SR (刘世荣), Ge JP (葛剑平), Wang H (王辉), Chang JG (常建国), Sun TT (孙甜甜), Ma JM (马姜明), Shi G (施恭) (2007). The relationship between soil respiration and the temperature at different soil depths in subalpine coniferous forest of western Sichuan Province. Chinese Journal of Applied Ecology (应用生态学报), 18, 1219-1224. (in Chinese with English abstract)
URL PMID |
[6] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
DOI URL PMID |
[7] |
Davidson EA, Janssens IA, Luo YQ (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154-164.
DOI URL |
[8] |
Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[9] | Duan L (段雷) (2000). Study on Mapping Critical Loads of Acid Deposition in China (中国酸沉降临界负荷区划研究). PhD dissertation, Tsinghua University, Beijing, 155-158. (in Chinese) |
[10] |
Elberling B, Brandt KK (2003). Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling. Soil Biology & Biochemistry, 35, 263-272.
DOI URL |
[11] | Fang JY (方精云), Wang W (王娓) (2007). Soil respiration as a key belowground process: issues and perspectives. Journal of Plant Ecology (Chinese Version) ( 植物生态学报), 31, 345-347. (in Chinese with English abstract) |
[12] | Feng WT (冯文婷), Zou XM (邹晓明), Sha LQ (沙丽清), Chen JH (陈建会), Feng ZL (冯志立), Li JZ (李检舟) (2008). Comparisons between seasonal and diurnal patterns of soil respiration in a montane evergreen broad-leaved forest of Ailao Mountains, China. Journal of Plant Ecology (Chinese Version)(植物生态学报), 32, 31-39. (in Chinese with English abstract) |
[13] |
Fisk MC, Fahey TJ (2001). Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry, 53, 201-223.
DOI URL |
[14] |
Flanagan PW, Cleve KV (1983). Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Canadian Journal of Forest Research, 13, 795-817.
DOI URL |
[15] |
Fog K (1988). The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews of the Cambridge Philosophical Society, 63, 433-462.
DOI URL |
[16] |
Galloway JN, Cowling EB (2002). Reactive nitrogen and the world: 200 years of change. Ambio, 31, 64-71.
DOI URL PMID |
[17] |
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Clerveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226.
DOI URL |
[18] |
Grennfelt P, Hultberg H (1986). Effect of nitrogen deposition on the acidification of terrestrial and aquatic ecosystems. Water, Air and Soil Pollution, 30, 945-963.
DOI URL |
[19] | Guo QR (郭起荣), Yang GY (杨光耀), Du TZ (杜天真), Shi JM (施建敏) (2005). Carbon character of Chinese bamboo forest. World Bamboo and Rattan (世界竹藤通讯), 3(3), 24-28. (in Chinese) |
[20] |
Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu ZL (1996). Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry, 35, 181-226.
DOI URL |
[21] | Huang ZL (黄忠良), Ding MM (丁明懋), Zhang ZP (张祝平), Yi WM (蚁伟民) (1994). The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghushan. Acta Phytoecologica Sinica (植物生态学报), 18, 194-199. (in Chinese with English abstract) |
[22] | Jenkinson DS (1988). The determination of microbial biomass carbon and nitrogen in soil.In: Wilson JR ed. . Advances in Nitrogen Cycling in Agricultural Ecosystem. CAB International, Wallingford,UK, 368-386. |
[23] | Jia SX (贾淑霞), Wang ZQ (王政权), Mei L (梅莉), Sun Y (孙玥), Quan XK (全先奎), Shi JW (史建伟), Yu SQ (于水强), Sun HL (孙海龙), Gu JC (谷加存) (2007). Effect of nitrogen fertilization on soil respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 372-379. (in Chinese with English abstract) |
[24] | Korner C (2000). Biosphere responses to CO2 enrichment. Ecological Applications, 10, 1590-1619. |
[25] |
Liu HS (刘洪升), Liu HJ (刘华杰), Wang ZP (王智平), Xu M (徐明), Han XG (韩兴国), Li LH (李凌浩) (2008). The temperature sensitivity of soil respiration. Progress in Geography (地理科学进展), 27, 51-60. (in Chinese with English abstract)
DOI URL |
[26] | Liu SH (刘绍辉), Fang JY (方精云) (1997). Effect factors of soil respiration and the temperature’s effects on soil respiration in the global scale. Acta Ecologica Sinica (生态学报), 17, 469-476. (in Chinese with English abstract) |
[27] |
Madritch MD, Hunter MD (2003). Intraspecific litter diversity and nitrogen deposition affect nutrient dynamics and soil respiration. Oecologia, 136, 124-128.
DOI URL PMID |
[28] | Mei ZL (梅自良), Liu ZQ (刘仲秋), Liu L (刘丽), Wang B (王斌) (2005). Analysis on the variantion of acidity and chemical compositions of rain water in Chengdu urban area. Sichuan Environment (四川环境), 24(3), 52-55. (in Chinese with English abstract) |
[29] |
Melillo JM, Aber JD, Muratore JM (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.
DOI URL |
[30] |
Paul JW, Beauchamp EG (1996). Soil microbial biomass C, N mineralization and N uptake by corn in dairy cattle slurry and urea amended soils. Canadian Journal of Soil Science, 76, 469-472.
DOI URL |
[31] |
Pregitzer KS, King JS, Burton AJ, Brown S (2000). Responses of tree fine roots to temperature. New Phytologist, 147, 105-115.
DOI URL |
[32] |
Qi Y, Xu M (2001). Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada Mountains. Plant Soil, 237, 15-23.
DOI URL |
[33] |
Qi Y, Xu M, Wu J (2002). Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets. Ecological Modelling, 153, 131-142.
DOI URL |
[34] |
Rabalais N (2002). Nitrogen in aquatic ecosystems. Ambio, 31, 102-112.
DOI URL PMID |
[35] |
Raich JW, Potter CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36.
DOI URL |
[36] |
Richard DB, Eric D, Kathleen S, Chris A, Paul S (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soil at the Harvard Forest. Forest Ecology and Management, 196, 43-56.
DOI URL |
[37] | Rout SK, Gupta SR (1989). Soil respiration in relation to abiotic factors, forest floor litter, root biomass and litter quality in forest ecosystems of Siwaliks in northern India. Acta Oecologica (Oecologia Plantarum), 10, 229-244. |
[38] |
Savage KE, Davidson EA (2001). Interannual variation of soil respiration in two New England forests. Global Biogeochemical Cycles, 15, 337-350.
DOI URL |
[39] |
Schimel DS (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1, 77-91.
DOI URL |
[40] | Schindler DW (1994). Changes caused by acidification to the biodiversity, productivity and biogeochemical cycles of lakes. In: Stemberg CEW, Wright RW eds. Acidification of Freshwater Ecosystems: Implications for the Future. John Wiley & Sons, Chichester, England, 153-164. |
[41] | Schlesinger WH (1977). Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 8, 5l-8l. |
[42] |
Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
DOI URL |
[43] |
Schulze ED (2006). Biological control of the terrestrial carbon sink. Biogeosciences, 3, 147-166.
DOI URL |
[44] | Song XG (宋学贵), Hu TX (胡庭兴), Xian JR (鲜骏仁), Xiao CL (肖春莲), Liu WT (刘文婷) (2007). Soil respiration and its response to simulated nitrogen deposition evergreen broad-leaved forest, Southwest Sichuan. Journal of Soil and Water Conservation (水土保持学报), 21(4), 168-192. (in Chinese with English abstract) |
[45] |
Takahashi A, Hiyama T, Takahashi HA, Fukushima Y (2004). Analytical estimation of the vertical distribution of CO2 production within soil application to a Japanese temperate forest. Agricultural and Forest Meteorology, 126, 223-235.
DOI URL |
[46] |
Townsend AR, Braswell BH, Holland EA, Penner JE (1996). Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications, 6, 806-814.
DOI URL |
[47] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737-750. |
[48] | Wang XG (王小国), Zhu B (朱波), Wang YQ (王艳强), Zheng XH (郑循华) (2007). Soil respiration and its sensitivity to temperature under different land use conditions. Chinese Journal of Applied Ecology (应用生态学报), 27, 1960-1968. (in Chinese with English abstract) |
[49] | Waring RH, Running SW (1998). Forest Ecosystems: Analysis at Multiple Scales. Academic Press, San Diego,CA. |
[50] |
Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990). Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biology and Biochemistry, 22, 1167-1169.
DOI URL |
[51] | Wu JY (武俊英), Deng SH (邓仕槐), Zheng RH (郑仁宏), Long YB (龙用波), Zhou P (周鹏) (2006). Formation mechanism research of acid rain in Ya’an urban area. Journal of Sichuan Agricultural University (四川农业大学学报), 24, 432-434, 458. (in Chinese with English abstract) |
[52] |
Yang WQ (杨万勤), Wang KY (王开运) (2004). Advances in forest soil enzymology. Scientia Silvae Sinicae (林业科学), 40, 152-159. (in Chinese with English abstract)
DOI URL |
[53] | Zhang DQ (张东秋), Shi PL (石培礼), Zhang XZ (张宪洲) (2005). Some advance in the main factors controlling soil respiration. Advances in Earth Science (地球科学进展), 20, 778-785. (in Chinese with English abstract) |
[54] | Zhou GY (周国逸), Yan JH (闫俊华) (2001). The influences of regional atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems. Acta Ecologica Sinica (生态学报), 21, 2002-2012. (in Chinese with English abstract) |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[4] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[5] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[6] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[7] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[8] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[9] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[10] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[11] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[12] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[13] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[14] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[15] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19