植物生态学报 ›› 2009, Vol. 33 ›› Issue (5): 936-949.DOI: 10.3773/j.issn.1005-264x.2009.05.013
所属专题: 生态系统碳水能量通量
收稿日期:
2008-10-13
修回日期:
2008-10-13
出版日期:
2009-10-13
发布日期:
2009-09-30
通讯作者:
陈亚宁
作者简介:
*(chenyn@ms.xjb.ac.cn)基金资助:
ZHANG Li-Hua(), CHEN Ya-Ning*(
), ZHAO Rui-Feng, LI Wei-Hong
Received:
2008-10-13
Revised:
2008-10-13
Online:
2009-10-13
Published:
2009-09-30
Contact:
CHEN Ya-Ning
摘要:
荒漠对气候变化具有高度敏感性, 深刻认识和量化非生物因子对荒漠生态系统土壤呼吸的影响具有重要意义。采用自动CO2通量系统(Li-8100)监测了梭梭(Haloxylon ammodendron)、假木贼(Anabasis aphylla)和盐穗木(Halostachys caspica)群落生长季土壤呼吸及温度、土壤含水量等, 深入分析了水热因子对土壤呼吸的影响。土壤呼吸具有不对称的日格局, 最小值出现在8:00, 最大值在12:00~14:00。土壤呼吸的季节格局与气温变化基本同步, 最小值在生长季末期(10月), 最大值在生长季中期(6~7月)。梭梭、假木贼和盐穗木群落生长季平均土壤呼吸速率分别为0.76、0.52和0.46 μmol CO2·m-2·s-1。气温对假木贼(51%)和盐穗木群落(65%)土壤呼吸季节变化的解释率高于梭梭(35%)。梭梭、假木贼和盐穗木群落土壤呼吸温度敏感性(Q10)逐渐增大, 基础呼吸速率(R10)逐渐减小。剔除温度影响后, 梭梭、假木贼群落土壤呼吸与土壤含水量呈显著的幂二次方函数关系, 盐穗木群落两者关系却明显减弱, 未达到显著水平。气温、土壤含水量的二元方程均能解释群落土壤呼吸大部分的时间变异: 梭梭群落71%~93%、假木贼群落79%~82%、盐穗木群落70%~80%。人工模拟降水后土壤呼吸速率表现出降水后10 min减小、180 min时明显增加、达到最大值后再次衰减的现象。5和2.5 mm降水处理下的土壤呼吸速率最大值和其后的递减值高于对照处理, 土壤呼吸增加、达到峰值和其后递减过程与5 cm土壤温度变化基本同步。
张丽华, 陈亚宁, 赵锐锋, 李卫红. 温带荒漠中温度和土壤水分对土壤呼吸的影响. 植物生态学报, 2009, 33(5): 936-949. DOI: 10.3773/j.issn.1005-264x.2009.05.013
ZHANG Li-Hua, CHEN Ya-Ning, ZHAO Rui-Feng, LI Wei-Hong. IMPACT OF TEMPERATURE AND SOIL WATER CONTENT ON SOIL RESPIRATION IN TEMPERATE DESERTS, CHINA. Chinese Journal of Plant Ecology, 2009, 33(5): 936-949. DOI: 10.3773/j.issn.1005-264x.2009.05.013
群落 Community | 有机碳 Organic carbon (g·kg-1) | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 全钾 Total K (g·kg-1) | 速效氮Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | pH 1:5 | 电导率 Electric conductivity (ms·cm-1) | 全盐 Total salinity (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
梭梭 Haloxylon ammodendron | 3.153 | 5.436 | 0.278 | 0.687 | 19.166 | 11.385 | 3.670 | 241.000 | 9.090 | 0.616 | 2.157 |
假木贼 Anabasis aphylla | 3.037 | 5.236 | 0.290 | 0.663 | 19.218 | 11.183 | 2.039 | 132.900 | 8.341 | 0.784 | 3.295 |
盐穗木 Halostachys caspica | 3.361 | 5.795 | 0.326 | 0.758 | 20.692 | 9.869 | 5.901 | 129.100 | 8.125 | 1.923 | 6.788 |
表1 3种群落土壤养分和盐分特征
Table 1 Soil nutrient and salinity properties at three communities
群落 Community | 有机碳 Organic carbon (g·kg-1) | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 全钾 Total K (g·kg-1) | 速效氮Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | pH 1:5 | 电导率 Electric conductivity (ms·cm-1) | 全盐 Total salinity (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
梭梭 Haloxylon ammodendron | 3.153 | 5.436 | 0.278 | 0.687 | 19.166 | 11.385 | 3.670 | 241.000 | 9.090 | 0.616 | 2.157 |
假木贼 Anabasis aphylla | 3.037 | 5.236 | 0.290 | 0.663 | 19.218 | 11.183 | 2.039 | 132.900 | 8.341 | 0.784 | 3.295 |
盐穗木 Halostachys caspica | 3.361 | 5.795 | 0.326 | 0.758 | 20.692 | 9.869 | 5.901 | 129.100 | 8.125 | 1.923 | 6.788 |
图2 梭梭群落(a、b)、假木贼群落(c、d)和盐穗木群落(e、f)在2006年6月和9月的土壤呼吸速率(Rs)、5 cm土壤温度(T5)和气温(Ta)的日变化(数据点是观测时段的平均值和标准误差, 土壤呼吸重复数n=5, 温度重复数n=3)
Fig. 2 Diurnal variations of soil respiration rate (Rs) and temperature (T5: soil temperature at 5 cm depth, Ta: air temperature) of Haloxylon ammodendron (a, b), Anabasis aphylla (c, d) and Halostachys caspica community (e, f) in June and September, 2006. Error bars represent means±SE (n=5 for soil respiration rate, n=3 for temperature)
图3 气温(Ta)、0~5 cm平均土壤含水量(Ws)和土壤呼吸速率(Rs)的季节变化(平均值±标准误差, n=7)
Fig. 3 Seasonal variations of (a) air temperature (Ta), (b) soil water content over 0-5 cm depth (Ws) and (c) soil respiration rate (Rs) (mean±SE, n=7)
图4 采用指数方程对土壤呼吸(Rs)与气温(Ta)间关系的拟合 a: 梭梭群落 Haloxylon ammodendron community b: 假木贼群落 Anabasis aphylla community c: 盐穗木群落 Halostachys caspica d: 3种群落的综合数据 All data of three communities 每一个数据点是当日观测的平均值 Each value in the plot represents the average value of each site on measurement day
Fig. 4 Relationships between soil respiration rate (Rs) and air temperature (Ta) fitted with an exponential model
群落 Community | 样本数 n | Rs-Ws (实测土壤呼吸 For all measured efflux) | R2 | p | Rs10-Ws (标准化到10℃的土壤呼吸 For efflux at 10 °C) | R2 | p |
---|---|---|---|---|---|---|---|
梭梭 Haloxylon ammodendron | 12 | Rs=0.528+0.04Ws | 0.08 | 0.373 | Rs=0.175+0.05Ws | 0.50 | 0.010 |
12 | Rs=0.439Ws0.276 | 0.07 | 0.412 | Rs=0.154Ws0.624 | 0.55 | 0.006 | |
12 | Rs=0.185+0.16Ws-0.009Ws2 | 0.09 | 0.642 | Rs=0.022+0.104Ws-0.004Ws2 | 0.51 | 0.040 | |
假木贼 Anabasis aphylla | 12 | Rs=0.416+0.011Ws | 0.11 | 0.300 | Rs=0.197+0.011Ws | 0.57 | 0.004 |
12 | Rs=0.302Ws0.227 | 0.11 | 0.291 | Rs=0.141Ws0.341 | 0.51 | 0.010 | |
12 | Rs=0.126+0.077Ws-0.003Ws2 | 0.24 | 0.294 | Rs=0.165+0.018Ws-0.0003Ws2 | 0.58 | 0.020 | |
盐穗木 Halostachys caspica | 12 | Rs=0.415+0.004Ws | 0.02 | 0.680 | Rs=0.184+0.003Ws | 0.15 | 0.206 |
12 | Rs=0.292Ws0.165 | 0.05 | 0.507 | Rs=0.122Ws0.246 | 0.28 | 0.075 | |
12 | Rs=-0.182+0.11Ws-0.004Ws2 | 0.63 | 0.012 | Rs=0.045+0.028Ws-0.001Ws2 | 0.48 | 0.053 | |
综合 Total | 36 | Rs=0.62-0.005Ws | 0.01 | 0.576 | Rs=0.349-0.001Ws | 0.002 | 0.764 |
36 | Rs=0.579Ws-0.045 | 0.003 | 0.744 | Rs=0.318Ws-0.012 | 0.000 3 | 0.922 | |
36 | Rs=0.419+0.04Ws-0.002Ws2 | 0.05 | 0.400 | Rs=0.25+0.021Ws-0.001Ws2 | 0.04 | 0.538 |
表2 土壤呼吸(Rs)及标准化到10 ℃时的土壤呼吸速率(Rs10)与0~5 cm土壤含水量间的拟合
Table 2 Fitted equations of Rs and Rs10 (normalized soil respiration using the fit of Q10 function at 10 °C Ts) against W0-5 cm, respectively
群落 Community | 样本数 n | Rs-Ws (实测土壤呼吸 For all measured efflux) | R2 | p | Rs10-Ws (标准化到10℃的土壤呼吸 For efflux at 10 °C) | R2 | p |
---|---|---|---|---|---|---|---|
梭梭 Haloxylon ammodendron | 12 | Rs=0.528+0.04Ws | 0.08 | 0.373 | Rs=0.175+0.05Ws | 0.50 | 0.010 |
12 | Rs=0.439Ws0.276 | 0.07 | 0.412 | Rs=0.154Ws0.624 | 0.55 | 0.006 | |
12 | Rs=0.185+0.16Ws-0.009Ws2 | 0.09 | 0.642 | Rs=0.022+0.104Ws-0.004Ws2 | 0.51 | 0.040 | |
假木贼 Anabasis aphylla | 12 | Rs=0.416+0.011Ws | 0.11 | 0.300 | Rs=0.197+0.011Ws | 0.57 | 0.004 |
12 | Rs=0.302Ws0.227 | 0.11 | 0.291 | Rs=0.141Ws0.341 | 0.51 | 0.010 | |
12 | Rs=0.126+0.077Ws-0.003Ws2 | 0.24 | 0.294 | Rs=0.165+0.018Ws-0.0003Ws2 | 0.58 | 0.020 | |
盐穗木 Halostachys caspica | 12 | Rs=0.415+0.004Ws | 0.02 | 0.680 | Rs=0.184+0.003Ws | 0.15 | 0.206 |
12 | Rs=0.292Ws0.165 | 0.05 | 0.507 | Rs=0.122Ws0.246 | 0.28 | 0.075 | |
12 | Rs=-0.182+0.11Ws-0.004Ws2 | 0.63 | 0.012 | Rs=0.045+0.028Ws-0.001Ws2 | 0.48 | 0.053 | |
综合 Total | 36 | Rs=0.62-0.005Ws | 0.01 | 0.576 | Rs=0.349-0.001Ws | 0.002 | 0.764 |
36 | Rs=0.579Ws-0.045 | 0.003 | 0.744 | Rs=0.318Ws-0.012 | 0.000 3 | 0.922 | |
36 | Rs=0.419+0.04Ws-0.002Ws2 | 0.05 | 0.400 | Rs=0.25+0.021Ws-0.001Ws2 | 0.04 | 0.538 |
图5 采用Q10函数标准化到10 ℃的土壤呼吸速率与0~5 cm土壤含水量的拟合关系 实线代表回归拟合曲线 The solid line was the fitted regression line a、b、c、d: 同图4 See Fig. 4
Fig. 5 Relationships between the normalized soil respiration rate (Rs10) using the fit of the Q10 function with 10 ℃ Ts and soil water content (Ws) at the depth of 0-5 cm
![]() |
表3 土壤呼吸(Rs)与 气温(Ta)、0~5 cm土壤含水量(Wo0-5)的回归方程
Table.3 Table 3 Regression equations on soil respiration rate (Rs) against air temperature (Ta) and soil water content at 0- 5 cm depth (Wo0-5)
![]() |
图6 模拟降水后, 假木贼(a、c、e)、盐穗木(b、d、f)群落土壤呼吸速率、0~10 cm土壤含水量和5 cm土壤温度随时间变化 (平均值±标准误差, n=3)
Fig. 6 Soil respiration rate, soil water content at 0-10 cm and soil temperature at 5 cm depth following rainfall additions in Anabasis aphylla (a, c, e) and Halostachys caspica communities (b, d, f) (mean±SE, n=3)
图7 2006年雨天梭梭(a)、假木贼(b、c)群落土壤呼吸速率、气温和地表温度的日变化 数据是观测时段的平均值, 土壤呼吸速率重复次数n=5, 温度重复次数n=3 Data are mean value on every sampling period (n=5 for soil respiration rate, n=3 for temperature)
Fig. 7 Diurnal variations of soil respiration rate, air temperature and soil temperature at 0 cm depth on rainy days in 2006 in Haloxylon ammodendron (a) and Anabasis aphylla communities (b and c)
[1] |
Adu JK, Oades JM (1978). Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biology & Biochemistry, 10, 109-115.
DOI URL |
[2] |
Appel T (1998). Non-biomass soil organic N: the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying. Soil Biology & Biochemistry, 30, 1445-1456.
DOI URL |
[3] |
Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221-235.
DOI URL |
[4] |
Betts RA (2000). Offset of the potential carbon sink from boreal forestation by decrease in surface albedo. Nature, 408, 187-190.
DOI URL PMID |
[5] |
Borken W, Davidson EA, Savage K, Gaudinski J, Trumbore SE (2003). Drying and wetting effects on carbon dioxide release from organic horizons. Soil Science Society of America Journal, 67, 1888-1896.
DOI URL |
[6] |
Borken W, Xu YJ, Davidson EA, Beese F (2002). Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology, 8, 1205-1216.
DOI URL |
[7] |
Buchmann N (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry, 32, 1625-1635.
DOI URL |
[8] |
Casals P, Romanyà J, Cortina J, Bottner P, Coûteaux MM, Ramon-Vallejo V (2000). CO2 efflux from a Mediterranean semi-arid forest soil. I. Seasonality and effects of stoniness. Biogeochemistry, 48, 261-281.
DOI URL |
[9] |
Cavelier J, Peñuela MC (1990). Soil respiration in the cloud forest and dry deciduous forest of Serrania de Macuria, Colombia. Biotropica, 22, 346-352.
DOI URL |
[10] | Chang XX (常学向), Zhao AF (赵爱芬), Zhao WZ (赵文智), Chen HS (陈怀顺) (2003). Status of soil moisture in oasis and desert unirrigated vegetation regional along middle reaches of Heihe River Basin. Journal of Soil and Water Conservation (水土保持学报), 17, 126-129. (in Chinese with English abstract) |
[11] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon- cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
DOI URL PMID |
[12] |
Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227.
DOI URL |
[13] |
Davidson EA, Janssens IA, Luo Y (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154-164.
DOI URL |
[14] |
Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JEM (2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69.
DOI URL |
[15] |
Degens BP, Sparling GP (1995). Repeated wet-dry cycles do not accelerate the mineralization of organic C involved in the macro-aggregation of a sandy loam soil. Plant and Soil, 175, 197-203.
DOI URL |
[16] | Dilustro JJ, Collins B, Duncan L, Crawford C (2005). Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management, 204, 85-95. |
[17] |
Emmerich WE (2003). Carbon dioxide fluxes in a semiarid environment with high carbonate soils. Agricultural and Forest Meteorology, 116, 91-102.
DOI URL |
[18] |
Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 33, 155-165.
DOI URL |
[19] |
Fernandez DP, Neff JC, Belnap J, Reynolds RL (2006). Soil respiration in the cold desert environment of the Colorado Plateau (USA): abiotic regulators and thresholds. Biogeochemistry, 78, 247-265.
DOI URL |
[20] | Fierer N, Schimel JP (2003). A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 67, 789-805. |
[21] |
Franzluebbers AJ, Haney RL, Honeycutt CW, Schomberg HH, Hons FM (2000). Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Science Society of America Journal, 64, 613-623.
DOI URL |
[22] |
Gaumont-Guay D, Black TA, Griffis TJ, Barr AG, Jassal RS, Nesic Z (2006). Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agricultural and Forest Meteorology, 140, 220-235.
DOI URL |
[23] |
Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 291, 15-26.
DOI URL |
[24] | Huang X (黄湘), Chen YN (陈亚宁), Li WH (李卫红), Liu JZ (刘加珍), Chen YP (陈亚鹏) (2006). Daily variation of carbon flux in soils of Populus euphratica forests in the middle and lower reaches of the Tarim River. Progress in Natural Science (自然科学进展), 16, 1405-1410. (in Chinese) |
[25] |
Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268.
DOI URL |
[26] |
Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Global Change Biology, 14, 1-14.
DOI URL |
[27] |
Jia B, Zhou G, Wang Y, Wang F, Wang X (2006). Effects of temperature and soil water content on soil respiration of grazed and ungrazedLeymus chinensis steppes, Inner Mongolia. Journal of Arid Environments, 67, 60-67.
DOI URL |
[28] |
Kang S, Doh S, Lee D, Jin VL, Kimball JS (2003). Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 9, 1427-1437.
DOI URL |
[29] |
Kirschbaum MUF (2006). The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biology & Biochemistry, 38, 2510-2518.
DOI URL |
[30] |
Li HJ, Yan JX, Yue XF, Wang MB (2008). Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agricultural and Forest Meteorology, 148, 490-503.
DOI URL |
[31] |
Liang NS, Nakadai T, Hirano T, Qu LY, Takayoshi K, Yasumi F, Gen I (2004). In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch(Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology, 123, 97-117.
DOI URL |
[32] |
Maestre FT, Cortina J (2003). Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology, 23, 199-209.
DOI URL |
[33] | Noy-Meir I (1980). Structure and function of desert ecosystems. Israel Journal of Botany, 28, 1-19. |
[34] | Qian YB (钱亦兵), Zhou HR (周华荣), Xu M (徐曼), Jiang J (蒋进), Wang XQ (王雪芹), Li DM (李东梅), Zhao CJ (赵从举) (2004). Relationship between water-soil properties and desert plant diversities in Agricultural Development Area of Kelamayi. Journal of Soil and Water Conservation (水土保持学报), 18, 186-189. (in Chinese with English abstract) |
[35] |
Sánchez ML, Ozores MI, López MJ, Colle R, de Torre B, Garia MA, Perez I (2003). Soil CO2 fluxes beneath barley on the central Spanish plateau. Agricultural and Forest Meteorology, 118, 85-95.
DOI URL |
[36] |
Sponseller RA (2007). Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Global Change Biology, 13, 426-436.
DOI URL |
[37] | Sun HL (孙鸿烈) (2005). Ecosystems in China (中国生态系统). Science Press, Beijing, 653. (in Chinese) |
[38] |
Tang JW, Baldocchi DD (2005). Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 73, 183-207.
DOI URL |
[39] |
West NE, Stark JM, Johnson DW, Abrams MM, Wight JR, Heggem D, Peck S (1994). Effects of climatic change on the edaphic features of arid and semiarid lands of western North America. Arid Soil Research Rehabilitation, 8, 307-351.
DOI URL |
[40] | Xie JX (谢静霞), Zhai CX (翟翠霞), Li Y (李彦) (2008). Contrasting analysis on soil CO2 efflux between saline desert and farmland. Progress in Natural Science (自然科学进展), 18, 262-268. (in Chinese) |
[41] |
Xie JX, Li Y, Zhai CX, Li CH, Lan ZD (2008). CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environment Geology, doi: 10.1007/s00254-008-1197-0
URL PMID |
[42] |
Xu M, Qi Y (2001). Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in Northern California. Global Change Biology, 7, 667-677.
DOI URL |
[43] |
Yuste JC, Janssens IA, Carrara A, Meiresonne L, Ceulemans R (2003). Interactive effects of temperature and precipitation on soil respiration in a temperate maritime forest. Tree Physiology, 23, 1263-1270.
DOI URL PMID |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[5] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[6] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[7] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[8] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[9] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[10] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[11] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[12] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[13] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[14] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[15] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19