植物生态学报 ›› 2012, Vol. 36 ›› Issue (11): 1165-1171.DOI: 10.3724/SP.J.1258.2012.01165
收稿日期:
2012-06-26
修回日期:
2012-08-28
出版日期:
2012-06-26
发布日期:
2012-11-09
通讯作者:
石兆勇
作者简介:
* E-mail: shizy1116@126.com
SHI Zhao-Yong1,2,*(), WANG Fa-Yuan1, MIAO Yan-Fang1
Received:
2012-06-26
Revised:
2012-08-28
Online:
2012-06-26
Published:
2012-11-09
Contact:
SHI Zhao-Yong
摘要:
菌根是由土壤中的菌根菌与植物根系形成的互惠共生体, 在植物生产力和生态系统碳循环过程中发挥着重要的作用。该文基于全球森林数据库, 建立了包括全球森林菌根类型、净初级生产力(net primary productivity, NPP)和年平均气温等指标的新数据库。在此基础上, 分析了6种菌根类型(丛枝菌根(arbuscular mycorrhiza, AM)、AM +外生菌根(ectomycorrhiza, ECM)、AM + ECM +内外生菌根(ectendomycorrhiza, EEM)、ECM、ECM + EEM和ECM + EEM +无菌根(nonmycorrhiza, NM))森林的总NPP、地上和地下NPP、树木主干NPP、树叶NPP, 以及树木细根NPP对年平均气温变化的响应。结果表明, 不同菌根类型的森林总NPP、地上和地下NPP虽然都随气温的升高呈现上升的趋势, 但其响应程度因菌根类型的不同而有所差异。除AM和AM + ECM + EEM类型的森林外, 其他4种菌根类型的森林总NPP都随年平均气温的增加而显著增加; 随着菌根类型的不同, 地上和地下NPP对年平均气温变化的响应程度也存在差异, 在AM + ECM类型的森林中, 气温对地上NPP变异的解释率最高, 达到57.27%, 而地下NPP仅在ECM类型和ECM + EEM类型的森林中呈现出与年平均气温显著的回归关系。树木主干、树叶和细根的NPP则随菌根类型的不同而变化, 与气温变化呈现正、负相关关系。从AM与ECM类型的森林的NPP来看, 无论是总NPP还是各个组成部分的NPP, ECM类型的森林的NPP对气温的响应总是较AM类型更为敏感。可见, 不同类型的菌根通过影响森林不同部分的NPP对气温变化的响应程度而影响到森林NPP对气温变化的响应。这表明菌根类型是预测气温变化对森林NPP影响的重要指标。
石兆勇, 王发园, 苗艳芳. 不同菌根类型的森林净初级生产力对气温变化的响应. 植物生态学报, 2012, 36(11): 1165-1171. DOI: 10.3724/SP.J.1258.2012.01165
SHI Zhao-Yong, WANG Fa-Yuan, MIAO Yan-Fang. Responses of net primary productivity to air temperature change in forests dominated by different mycorrhizal strategies. Chinese Journal of Plant Ecology, 2012, 36(11): 1165-1171. DOI: 10.3724/SP.J.1258.2012.01165
图1 不同菌根类型的森林的总净初级生产力(NPP)对年平均气温变化的响应。A, 丛枝菌根。B, 丛枝菌根+外生菌根。C, 丛枝菌根+外生菌根+内外生菌根。D, 外生菌根。E, 外生菌根+内外生菌根。F, 外生菌根+内外生菌根+无菌根。
Fig. 1 Responses of total net primary productivity (NPP) of forests with different mycorrhizal associations to change of mean annual air temperature. A, Arbuscular mycorrhiza. B, Arbuscular mycorrhiza + ectomycorrhiza. C, Arbuscular mycorrhiza + ectomycorrhiza + ectendomycorrhiza. D, Ectomycorrhiza. E, Ectomycorrhiza + ectendomycorrhiza. F, Ectom- ycorrhiza + ectendomycorrhiza + nonmycorrhiza.
图2 不同菌根类型的森林地上(ρ)和地下(○)净初级生产力(NPP)对年平均气温变化的响应。A, 丛枝菌根。B, 丛枝菌根+外生菌根。C, 丛枝菌根+外生菌根+内外生菌根。D, 外生菌根。E, 外生菌根+内外生菌根。F, 外生菌根+内外生菌根+无菌根。ya (实线)和yb (虚线)分别代表地上和地下NPP的回归方程。
Fig. 2 Responses of above- (ρ) and below-ground (○) net primary productivity (NPP) of forests with different mycorrhizal associations to change of mean annual air temperature. A, Arbuscular mycorrhiza. B, Arbuscular mycorrhiza + ectomycorrhiza. C, Arbuscular mycorrhiza + ectomycorrhiza + ectendomycorrhiza. D, Ectomycorrhiza. E, Ectomycorrhiza + ectendomycorrhiza. F, Ectomycorrhiza + ectendomycorrhiza + nonmycorrhiza. ya (solid line) and yb (broken line) mean the regression of above- and below-ground NPP, respectively.
图3 不同菌根类型的森林树木主干(ρ)和树叶(○)的净初级生产力(NPP)对年平均气温变化的响应。A, 丛枝菌根。B, 丛枝菌根+外生菌根。C, 丛枝菌根+外生菌根+内外生菌根。D, 外生菌根。E, 外生菌根+内外生菌根。F, 外生菌根+内外生菌根+无菌根。ys (实线)和y1 (虚线)分别代表树木主干和叶的净初级生产力的回归方程。
Fig. 3 Responses of net primary productivity (NPP) of main stem (ρ) and tree leaf (○) of forests with different mycorrhizal associations to change of mean annual air temperature. A, Arbuscular mycorrhiza. B, Arbuscular mycorrhiza + ectomycorrhiza. C, Arbuscular mycorrhiza + ectomycorrhiza + ectendomycorrhiza. D, Ectomycorrhiza. E, Ectomycorrhiza + ectendomycorrhiza. F, Ectomycorrhiza + ectendomycorrhiza + nonmycorrhiza. ys (solid line) and y1 (broken line) mean the regression of NPP of main stem and tree leaf, respectively.
菌根类型 Mycorrhizal type | n | 拟合方程 Fitting equation | R2 | p |
---|---|---|---|---|
AM | 10 | y = -2.9385x + 267.40 | 0.021 5 | 0.686 0 |
AM + ECM | 31 | y = -0.3899x + 120.85 | 0.000 5 | 0.905 0 |
AM + ECM + EEM | 13 | y = 16.1080x + 50.47 | 0.676 0 | 0.391 0 |
ECM | 70 | y = 3.3956x + 112.94 | 0.077 3 | <0.001 0 |
ECM + EEM | 15 | y = -2.1853x + 146.55 | 0.011 9 | 0.699 0 |
ECM + EEM + NM | 24 | y = 2.9318x + 93.18 | 0.099 1 | 0.134 0 |
表1 不同菌根类型的森林的细根净初级生产力(NPP)对年平均气温变化的响应的拟合方程
Table 1 Fitting equation of response of net primary productivity (NPP) of fine roots of forest dominated by different mycorrhizal associations to change of mean annual air temperature
菌根类型 Mycorrhizal type | n | 拟合方程 Fitting equation | R2 | p |
---|---|---|---|---|
AM | 10 | y = -2.9385x + 267.40 | 0.021 5 | 0.686 0 |
AM + ECM | 31 | y = -0.3899x + 120.85 | 0.000 5 | 0.905 0 |
AM + ECM + EEM | 13 | y = 16.1080x + 50.47 | 0.676 0 | 0.391 0 |
ECM | 70 | y = 3.3956x + 112.94 | 0.077 3 | <0.001 0 |
ECM + EEM | 15 | y = -2.1853x + 146.55 | 0.011 9 | 0.699 0 |
ECM + EEM + NM | 24 | y = 2.9318x + 93.18 | 0.099 1 | 0.134 0 |
1 | Antoninka A, Wolf JE, Bowker M, Classen AT, Johnson NC ( 2009). Linking above- and belowground respon- ses to global change at community and ecosystem scales. Global Change Biology, 15, 914-929. |
2 | Brown S, Sathaye J, Canell M, Kauppi PE ( 1996). Mitigation of carbon emission to the atmosphere by forest management. Commonwealth Forestry Review, 75, 80-91. |
3 | Cornelissen JHC, Aerts R, Cerabolini B, Werger M, van der Heijden M ( 2001). Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129, 611-619. |
4 | Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ ( 2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availabi- lity. New Phytologist, 183, 980-992. |
5 | Fang JY ( 方精云), Chen AP ( 陈安平), Zhao SQ ( 赵淑青), Ci LJ ( 慈龙骏 ) (2002). Estimating biomass carbon of China’s forests: supplementary notes on report published in Science (291: 2320-2322) by Fang et al. (2001). Acta Phytoecologica Sinica (植物生态学报), 26, 243-249. (in Chinese with English abstract) |
6 | Fang JY ( 方精云), Ke JH ( 柯金虎), Tang ZY ( 唐志尧), Chen AP ( 陈安平 ) ( 2001). Implications and estimations of four terrestrial productivity parameters. Acta Phytoecologica Sinica (植物生态学报), 25, 414-419. (in Chinese with English abstract) |
7 | Hicke JA, Asner GP, Randerson JT, Tucker C, Los S, Birdsey R, Jenkins JC, Field C ( 2002). Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochemical Cycles, 16, 1018-1031. |
8 | Lieth H, Whittaker RH ( 1975). Primary Productivity of the Biosphere. Springer-Verlag, New York. |
9 | Liu RJ ( 刘润进), Chen YL ( 陈应龙 ) (2007). Mycorr- hizology (菌根学). Science Press, Beijing. (in Chinese) |
10 | Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding RD, Hollinger Y, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA ( 2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509-2537. |
11 | Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW ( 2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563. |
12 | Pate JS, Stewart GR, Unkovich M ( 1993). 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N2-fixing abilities of component species. Plant, Cell & Environment, 16, 365-373. |
13 | Piao SL, Fang JY, Zhou LM, Zhu B, Tan K, Tao S (2005). Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles, 19, GB2027, doi: 10.1029/2004GB002274. |
14 | Read DJ ( 1991). Mycorrhizas in ecosystems. Experientia, 47, 376-391. |
15 | Shi ZY ( 石兆勇), Liu DH ( 刘德鸿), Wang FY ( 王发园), Ding XD ( 丁效东 ) ( 2012). Effect of mycorrhizal strategy on net primary productivity of trees in global forest ecosystem. Ecology and Environmental Sciences (生态环境学报), 21, 404-408. (in Chinese with English abstract) |
16 | Smith SE, Read DJ ( 2008). Mycorrhizal Symbiosis 3rd edn. Elsevier Ltd., London. |
17 | van der Heijden M, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR ( 1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72. |
18 | Vargas R, Baldocchi DD, Querejeta JI, Curtis PS, Hasse- lquist NJ, Janssens IA, Allen MF, Montagnani L ( 2010). Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature. New Phytologist, 185, 226-236. |
19 | Vogt KA, Grier CC, Meier CE, Edmonds RL ( 1982). Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in Western Washington. Ecology, 63, 370-380. |
20 | Zhao MS, Running SW ( 2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943. |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[4] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[5] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[6] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[7] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[8] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[9] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[10] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[11] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[12] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[13] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[14] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[15] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19