植物生态学报 ›› 2012, Vol. 36 ›› Issue (2): 99-108.DOI: 10.3724/SP.J.1258.2012.00099
• 研究论文 • 下一篇
涂利华1, 胡红玲1,2, 胡庭兴1,*(), 张健2, 雒守华1, 戴洪忠1
收稿日期:
2011-11-23
接受日期:
2011-12-16
出版日期:
2012-11-23
发布日期:
2012-02-22
通讯作者:
胡庭兴
作者简介:
* E-mail: hutx001@yahoo.com.cn
TU Li-Hua1, HU Hong-Ling1,2, HU Ting-Xing1,*(), ZHANG Jian2, LUO Shou-Hua1, DAI Hong-Zhong1
Received:
2011-11-23
Accepted:
2011-12-16
Online:
2012-11-23
Published:
2012-02-22
Contact:
HU Ting-Xing
摘要:
从2008年1月至2009年2月, 对华西雨屏区亮叶桦(Betula luminifera)人工林进行了模拟氮(N)沉降试验, N沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低N (5 g N·m-2·a-1)、中N (15 g N·m-2·a-1)和高N (30 g N·m-2·a-1)。利用凋落袋法对亮叶桦凋落叶进行原位分解试验, 并在每月下旬定量地对各处理施N (NH4NO3)。结果表明, 虽然华西雨屏区大气N沉降量较高, 但模拟N沉降试验表明: 在N沉降继续增加的情况下, 凋落叶分解这一碳(C)循环和养分循环过程仍会受到显著影响。在1年的分解试验中, 模拟N沉降显著抑制了亮叶桦凋落叶的分解, N沉降处理使得凋落叶质量损失95%的时间在2.65年的基础上增加了1.14-1.96年。N沉降抑制凋落叶分解的原因在于无机N的富集对木质素和纤维素的分解造成阻碍。N沉降处理也导致C、N、磷、钾和镁元素在凋落物中的残留量增加, 但N沉降加速了钙元素的释放。凋落物基质化学特性在很大程度上决定了凋落物分解对N沉降的响应方向, 以及凋落物分解过程中各元素的动态变化。
涂利华, 胡红玲, 胡庭兴, 张健, 雒守华, 戴洪忠. 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应. 植物生态学报, 2012, 36(2): 99-108. DOI: 10.3724/SP.J.1258.2012.00099
TU Li-Hua, HU Hong-Ling, HU Ting-Xing, ZHANG Jian, LUO Shou-Hua, DAI Hong-Zhong. Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China. Chinese Journal of Plant Ecology, 2012, 36(2): 99-108. DOI: 10.3724/SP.J.1258.2012.00099
容重 Bulk density (g·cm-3) | 最大持水量 Full water capacity (%) | 总孔隙度 Total porosity (% ) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 有效氮 Available nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|---|
1.29 ± 0.05 | 39.06 ± 4.01 | 50.29 ± 6.01 | 9.18 ± 1.53 | 1.54 ± 0.21 | 69.88 ± 6.53 | 14.11 ± 0.85 | 2.64 ± 0.18 | 4.88 ± 0.15 |
表1 0-10 cm土层基本理化性质(平均值±标准误差)
Table 1 Basic physical and chemical properties of 0-10 cm soil layer (mean ± SE)
容重 Bulk density (g·cm-3) | 最大持水量 Full water capacity (%) | 总孔隙度 Total porosity (% ) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 有效氮 Available nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|---|
1.29 ± 0.05 | 39.06 ± 4.01 | 50.29 ± 6.01 | 9.18 ± 1.53 | 1.54 ± 0.21 | 69.88 ± 6.53 | 14.11 ± 0.85 | 2.64 ± 0.18 | 4.88 ± 0.15 |
木质素 Lignin (mg·g-1) | 纤维素 Cellulose (mg·g-1) | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | K (mg·g-1) | Ca (mg·g-1) | Mg (mg·g-1) | C/N | N/P | Lignin/N |
---|---|---|---|---|---|---|---|---|---|---|
336.7 ± 3.8 | 240.7 ± 9.3 | 440.3 ± 6.6 | 9.11 ± 0.10 | 0.27 ± 0.01 | 7.15 ± 0.25 | 0.58 ± 0.01 | 1.90 ± 0.09 | 48.3 ± 0.8 | 33.7 ± 0.5 | 37.0 ± 1.5 |
表2 亮叶桦凋落叶初始化学性质(平均值±标准误差)
Table 2 Initial chemical properties of Betula luminifera leaf litter (mean ± SE)
木质素 Lignin (mg·g-1) | 纤维素 Cellulose (mg·g-1) | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | K (mg·g-1) | Ca (mg·g-1) | Mg (mg·g-1) | C/N | N/P | Lignin/N |
---|---|---|---|---|---|---|---|---|---|---|
336.7 ± 3.8 | 240.7 ± 9.3 | 440.3 ± 6.6 | 9.11 ± 0.10 | 0.27 ± 0.01 | 7.15 ± 0.25 | 0.58 ± 0.01 | 1.90 ± 0.09 | 48.3 ± 0.8 | 33.7 ± 0.5 | 37.0 ± 1.5 |
图1 亮叶桦凋落叶分解过程中质量残留率变化(平均值± 标准误差, n = 3)。斜体文字表示重复测量方差分析(repeated measures ANOVA)中的时间效应、N效应及其交互效应。各取样时间点上的LN、MN和HN (LN, 低N (5 g N·m-2·a-1); MN, 中N (15 g N·m-2·a-1); HN, 高N (30 g N·m-2·a-1))表示该处理与对照(CK)差异达到显著水平(p < 0.05)。
Fig. 1 Variations of mass remaining of Betula luminifera leaf litter during decomposition (mean ± SE, n = 3). Italic texts indicate that time effect, nitrogen effect and interaction effect are significant in repeated measures ANOVA. LN, MN and HN marked at each sampling date indicate significant differences at p < 0.05 between control and the levels of experimental N inputs (LN, low-N (5 g N·m-2·a-1); MN, medium-N (15 g N·m-2·a-1); HN, high-N (30 g N·m-2·a-1)), respectively.
处理 Treatment | 拟合参数 Fitting parameter a | 分解系数 Decomposition coefficient k | 决定系数 Determination coefficient R2 | p | n | 分解50%时间 T50% (a) | 分解95%时间 T95% (a) |
---|---|---|---|---|---|---|---|
对照 Control (0 g N·m-2·a-1) | 102.4 | 1.13 | 0.97 | < 0.001 | 7 | 0.61 | 2.65 |
低氮 Low nitrogen (5 g N·m-2·a-1) | 94.9 | 0.79 | 0.94 | < 0.001 | 7 | 0.88 | 3.79 |
中氮 Medium nitrogen (15 g N·m-2·a-1) | 96.4 | 0.70 | 0.97 | < 0.001 | 7 | 0.99 | 4.28 |
高氮 High nitrogen (30 g N·m-2·a-1) | 97.6 | 0.65 | 0.97 | < 0.001 | 7 | 1.07 | 4.61 |
表3 亮叶桦凋落叶质量残留率(y, %)与时间(x, a)的指数回归方程(y = ae-kx)
Table 3 Models (y = ae-kx) for the relationship between mass remaining (y, %) of Betula luminifera leaf litter and time (x, a)
处理 Treatment | 拟合参数 Fitting parameter a | 分解系数 Decomposition coefficient k | 决定系数 Determination coefficient R2 | p | n | 分解50%时间 T50% (a) | 分解95%时间 T95% (a) |
---|---|---|---|---|---|---|---|
对照 Control (0 g N·m-2·a-1) | 102.4 | 1.13 | 0.97 | < 0.001 | 7 | 0.61 | 2.65 |
低氮 Low nitrogen (5 g N·m-2·a-1) | 94.9 | 0.79 | 0.94 | < 0.001 | 7 | 0.88 | 3.79 |
中氮 Medium nitrogen (15 g N·m-2·a-1) | 96.4 | 0.70 | 0.97 | < 0.001 | 7 | 0.99 | 4.28 |
高氮 High nitrogen (30 g N·m-2·a-1) | 97.6 | 0.65 | 0.97 | < 0.001 | 7 | 1.07 | 4.61 |
图2 亮叶桦凋落叶分解过程中木质素和纤维素的残留率变化(平均值±标准误差, n = 3)。斜体文字表示重复测量方差分析(repeated measures ANOVA)中的时间效应、N效应及其交互效应。各取样时间点上的LN、MN和HN (LN, 低N (5 g N·m-2·a-1); MN, 中N (15 g N·m-2·a-1); HN, 高N (30 g N·m-2·a-1))表示该处理与对照(CK)差异达到显著水平(p < 0.05)。
Fig. 2 Variations of mass remaining of lignin and cellulose of Betula luminifera leaf litter during decomposition (mean ± SE, n = 3). Italic texts indicate that time effect, nitrogen effect and interaction effect are significant in repeated measures ANOVA. LN, MN and HN marked at each sampling date indicate significant differences at p < 0.05 between control and the levels of experimental N inputs (LN, low-N (5 g N·m-2·a-1); MN, medium-N (15 g N·m-2·a-1); HN, high-N (30 g N·m-2·a-1)), respectively.
图3 亮叶桦凋落叶分解过程中C、N、P、K、Ca、Mg元素的残留率变化(平均值±标准误差, n = 3)。斜体文字表示重复测量方差分析(repeated measures ANOVA)中的时间效应、N效应及其交互效应。各取样时间点上的LN、MN和HN (LN, 低N (5 g N·m-2·a-1); MN, 中N (15 g N·m-2·a-1); HN, 高N (30 g N·m-2·a-1))表示该处理与对照(CK)差异达到显著水平(p < 0.05)。
Fig. 3 Variations of remaining of C, N, P, K, Ca, and Mg of Betula luminifera leaf litter during decomposition (mean ± SE, n = 3). Italic texts indicate that time effect, nitrogen effect and interaction effect are significant in repeated measures ANOVA. LN, MN and HN marked at each sampling date indicate significant differences at p < 0.05 between control and the levels of experimental N inputs (LN, low-N (5 g N·m-2·a-1); MN, medium-N (15 g N·m-2·a-1); HN, high-N (30 g N·m-2·a-1)), respectively.
树种 Tree species | 初始N含量 Initial N concentration (mg·g-1) | 初始C/N Initial C/N | 最初2个月N动态 N dynamics in the first two months | N沉降效应 N deposition effect | 研究时间 Study time (a) | 参考文献 Reference |
---|---|---|---|---|---|---|
苦竹 Pleioblastus amarus | 3.9 | 100.0 | 富集 Enrich | 抑制 Inhibition | 2 | |
亮叶桦 Betula luminifera | 9.1 | 48.3 | 微弱富集 Gently enrich | 抑制 Inhibition | 1 | 本研究 This study |
巨桉 Eucalyptus grandis | 11.6 | 39.0 | 微弱富集 Gently enrich | 抑制 Inhibition | 2 | |
撑绿杂交竹 Bambusa pervariabilis × Dendrocala mopsi | 13.1 | 28.6 | 释放 Release | 抑制 Inhibition | 2 | |
慈竹 Neosinocalamus affinis | 22.3 | 20.5 | 释放 Release | 微弱促进 Gently stimulation | 1 |
表4 华西雨屏区几个树种凋落叶分解对N沉降的响应比较
Table 4 Comparison of effects of simulated N deposition on decomposition of leaf litter from several tree species, in the Rainy Area of West China
树种 Tree species | 初始N含量 Initial N concentration (mg·g-1) | 初始C/N Initial C/N | 最初2个月N动态 N dynamics in the first two months | N沉降效应 N deposition effect | 研究时间 Study time (a) | 参考文献 Reference |
---|---|---|---|---|---|---|
苦竹 Pleioblastus amarus | 3.9 | 100.0 | 富集 Enrich | 抑制 Inhibition | 2 | |
亮叶桦 Betula luminifera | 9.1 | 48.3 | 微弱富集 Gently enrich | 抑制 Inhibition | 1 | 本研究 This study |
巨桉 Eucalyptus grandis | 11.6 | 39.0 | 微弱富集 Gently enrich | 抑制 Inhibition | 2 | |
撑绿杂交竹 Bambusa pervariabilis × Dendrocala mopsi | 13.1 | 28.6 | 释放 Release | 抑制 Inhibition | 2 | |
慈竹 Neosinocalamus affinis | 22.3 | 20.5 | 释放 Release | 微弱促进 Gently stimulation | 1 |
[1] | Aber JD, Melillo JM (1982). Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Canadian Journal of Botany, 60, 2263-2269. |
[2] | Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449. |
[3] | Axelsson G, Berg B (1988). Fixation of ammonia (15N) to Pinus silvestris needle litter in different stages of decomposition. Scandinavian Journal of Forest Research, 3, 273-279. |
[4] | Berg B, Laskowski R, Caswell H (2006). Litter Decomposition: A Guide to Carbon and Nutrient Turnover. Elsevier, Burlington. |
[5] | Berg B, Matzner E (1997). Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews, 5, 1-25. |
[6] | Berg B, McClaugherty C (1989). Nitrogen and phosphorus release from decomposing litter in relation to the disappearance of lignin. Canadian Journal of Botany, 67, 1148-1156. |
[7] | Berg B, Meentemeyer V (2002). Litter quality in a north European transect versus carbon storage potential. Plant and Soil, 242, 83-92. |
[8] |
Blackwood CB, Waldrop MP, Zak DR, Sinsabaugh RL (2007). Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environmental Microbiology, 9, 1306-1316.
DOI URL PMID |
[9] |
Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365.
DOI URL |
[10] | Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF (1999). Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 13, 623-645. |
[11] | Frey SD, Elliott ET, Paustian K, Peterson GA (2000). Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biology & Biochemistry, 32, 689-698. |
[12] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226. |
[13] |
Hassett JE, Zak DR, Blackwood CB, Pregitzer KS (2009). Are basidiomycete laccase gene abundance and composition related to reduced lignolytic activity under elevated atmospheric NO3- deposition in a northern hardwood forest? Microbial Ecology, 57, 728-739.
DOI URL PMID |
[14] | Hobbie SE (2000). Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 3, 484-494. |
[15] |
Hobbie SE (2008). Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology, 89, 2633-2644.
DOI URL PMID |
[16] | Hofmockel KS, Zak DR, Blackwood CB (2007). Does atmospheric NO3- deposition alter the abundance and activity of ligninolytic fungi in forest soils? Ecosystems, 10, 1278-1286. |
[17] | Hu HL (胡红玲), Zhang J (张健), Liu Y (刘洋), Tu LH (涂利华), Xiang YB (向元彬) (2011). Effects of simulated nitrogen deposition on leaf litter decomposition in a plantation of Eucalyptus grandis, in a Rainy Region of West China. Scientia Silvae Sinicae (林业科学), 47(8), 25-30. (in Chinese with English abstract) |
[18] |
Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008). Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters, 11, 35-43.
DOI URL PMID |
[19] | Knops JMH, Naeem S, Reich PB (2007). The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biology, 13, 1960-1971. |
[20] | Knorr M, Frey SD, Curtis PS (2005). Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 86, 3252-3257. |
[21] |
Lauber CL, Sinsabaugh RL, Zak DR (2009). Laccase gene composition and relative abundance in oak forest soil is not affected by short-term nitrogen fertilization. Microbial Ecology, 57, 50-57.
DOI URL PMID |
[22] | Li RH (李仁洪), Hu TX (胡庭兴), Tu LH (涂利华), Liu C (刘闯), Luo SH (雒守华), Xiang YB (向元彬), Dai HZ (戴洪忠), Xie CY (谢财永) (2010). Nutrient release in decomposition of leaf litter in Neosinocalamus affinis stands in response to simulated nitrogen deposition in Rainy Area of Western China. Scientia Silvae Sinicae (林业科学), 46(8), 8-14. (in Chinese with English abstract) |
[23] | Li RH (李仁洪), Hu TX (胡庭兴), Tu LH (涂利华), Luo SH (雒守华), Xiang YB (向元彬), Dai HZ (戴洪忠), Huang LH (黄立华) (2009). Effects of simulated nitrogen deposition on litter decomposition in Neosinocalamus affinis stands in Rainy Area of West China. Chinese Journal of Applied Ecology (应用生态学报), 20, 2588-2593. (in Chinese with English abstract) |
[24] | Lin HJ (蔺晖钧) (2011). Preliminary Study on the Chemistry Features of Atmospheric Precipitation of Several Typical Regions in Sichuan (四川几个典型地区大气降水化学特征初步探讨). Master Degree dissertation, Sichuan Agricultural University, Ya’an, Sichuan. (in Chinese with English abstract) |
[25] | Ludovici KH, Kress LW (2006). Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes. Canadian Journal of Forest Research, 36, 105-111. |
[26] | Magill AH, Aber JD (1998). Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant and Soil, 203, 301-311. |
[27] | Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626. |
[28] | Micks P, Downs MR, Magill AH, Nadelhoffer KJ, Aber JD (2004). Decomposing litter as a sink for 15N-enriched additions to an oak forest and a red pine plantation. Forest Ecology and Management, 196, 71-87. |
[29] | Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD, CIDET Working Group (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9, 46-62. |
[30] | Nadelhoffer KJ, Colman BP, Currie WS, Magill A, Aber JD (2004). Decadal-scale fates of 15N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA). Forest Ecology and Management, 196, 89-107. |
[31] | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331. |
[32] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
URL PMID |
[33] | Prescott CE (1995). Does nitrogen availability control rates of litter decomposition in forests? Plant and Soil, 168-169-83-88. |
[34] | Rowland AP, Roberts JD (1994). Lignin and cellulose fractionation in decomposition studies using acid-detergent fiber methods. Communications in Soil Sciences and Plant Analysis, 25, 269-277. |
[35] |
Sayer EJ (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews, 81, 1-31.
DOI URL PMID |
[36] |
Sinsabaugh RL (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology & Biochemistry, 42, 391-404.
DOI URL |
[37] | Staaf H, Berg B (1982). Accumulation and release of plant nutrients in decomposing Scots pine needle litter. Long-term decomposition in a Scots pine forest II. Canadian Journal of Botany, 60, 1561-1568. |
[38] | Swift MJ, Heal OW, Anderson JM (1979). Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford. |
[39] | Tu LH (涂利华), Dai HZ (戴洪忠), Hu TX (胡庭兴), Zhang J (张健), Luo SH (雒守华), Cheng Y (成姚) (2011a). Effect of simulated nitrogen deposition on litter decomposition in a Bambusa pervariabilis × Dendrocala mopsi plantation, Rainy Area of West China. Acta Ecologica Sinica (生态学报), 31, 1277-1284. (in Chinese with English abstract) |
[40] | Tu LH, Hu HL, Hu TX, Zhang J, Liu L, Li RH, Dai HZ, Luo SH (2011). Decomposition of different litter fractions in a subtropical bamboo ecosystem as affected by experimental nitrogen deposition. Pedosphere, 21, 685-695. |
[41] | Tu LH (涂利华), Hu TX (胡庭兴), Huang LH (黄立华), Li RH (李仁洪), Dai HZ (戴洪忠), Luo SH (雒守华), Xiang YB (向元彬) (2009). Response of soil respiration to simulated nitrogen deposition in Pleioblastus amarus forest, Rainy Area of West China. Chinese Journal of Plant Ecology (植物生态学报), 33, 728-738. (in Chinese with English abstract) |
[42] | Tu LH (涂利华), Hu TX (胡庭兴), Zhang J (张健), Dai HZ (戴洪忠), Li RH (李仁洪), Xiang YB (向元彬), Luo SH (雒守华) (2011b). Effect of simulated nitrogen deposition on nutrient release in decomposition of several litter fractions of two bamboo species. Acta Ecologica Sinica (生态学报), 31, 1547-1557. (in Chinese with English abstract) |
[43] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[44] | Waldrop MP, Zak DR (2006). Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems, 9, 921-933. |
[45] | Waldrop MP, Zak DR, Sinsabaugh RL (2004a). Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biology & Biochemistry, 36, 1443-1451. |
[46] | Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004b). Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecological Applications, 14, 1172-1177. |
[47] | Zhang Y, Dore AJ, Liu X, Zhang F (2011). Simulation of nitrogen deposition in the North China Plain by the FRAME model. Biogeosciences, 8, 3319-3329. |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[3] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[4] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[5] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[6] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[7] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[8] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[9] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[10] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[11] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[12] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
[13] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[14] | 邹安龙,李修平,倪晓凤,吉成均. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783-792. |
[15] | 王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹. 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响[J]. 植物生态学报, 2019, 43(5): 427-436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19