植物生态学报 ›› 2013, Vol. 37 ›› Issue (7): 601-610.DOI: 10.3724/SP.J.1258.2013.00062
熊淑萍1,2,*(),张娟娟1,3,杨阳1,2,刘娟1,2,王晓航1,2,吴延鹏1,2,马新明1,2,**(
)
收稿日期:
2013-02-20
接受日期:
2013-05-14
出版日期:
2013-02-20
发布日期:
2013-07-05
通讯作者:
马新明
作者简介:
* E-mail: 基金资助:
XIONG Shu-Ping1,2,*(),ZHANG Juan-Juan1,3,YANG Yang1,2,LIU Juan1,2,WANG Xiao-Hang1,2,WU Yan-Peng1,2,MA Xin-Ming1,2,**(
)
Received:
2013-02-20
Accepted:
2013-05-14
Online:
2013-02-20
Published:
2013-07-05
Contact:
MA Xin-Ming
摘要:
为明确不同土壤质地条件下不同品种冬小麦(Triticum aestivum)的氮代谢和利用特征, 筛选与土壤质地相适宜的高产和氮高效利用的优质小麦品种, 采用大田试验的方法, 在同一生态类型区砂土、壤土和黏土3种质地土壤上, 以当地生产上大面积应用的强筋小麦‘郑麦366’ (‘ZM366’)和中筋小麦‘矮抗58’ (‘AK58’)、‘周麦22’ (‘ZM22’)为材料, 系统地研究了土壤质地对不同冬小麦品种主要生育时期叶片氨同化关键酶谷氨酰胺合成酶(GS)活性、游离氨基酸含量、花前和花后不同器官氮素积累和分配、氮素再分配等氮代谢过程及产量、品质和氮素利用效率等的影响。结果表明: 在这3种土壤质地上, 不同品种冬小麦旗叶GS活性和游离氨基酸含量均呈倒“V”型变化特征。各品种小麦旗叶GS活性、游离氨基酸含量大小及达到最大值的时期不一样, 砂土条件下峰值早于壤土10天左右出现, 且在5月22日已检测不到GS活性和游离氨基酸含量。花前和花后小麦地上部及各器官氮积累量(NA)、氮再分配量(NR)、成熟期籽粒产量和氮素当季利用率(NUE)均以壤土上为最高。氮素转运率(NRE)、花前再分配氮素对籽粒氮素的贡献率(NRC)、氮素生理效率(NPE)、氮收获指数(NHI)以砂土上为最高。其中, 砂土上NRC达82.46%-95.84%, 是花后的7倍左右; 壤土和黏土条件下花后吸收的氮素在籽粒氮素的积累中占有较大的比例, 贡献率分别为36.6%和29.2%。同一土壤质地上3个品种比较, 在砂土上, GS活性、游离氨基酸含量、籽粒产量、蛋白质含量及NUE和NPE以‘郑麦366’最高, 而壤土上以‘矮抗58’最高, 黏土上则以‘周麦22’最高。因此, 在生产上应培育和选择与土壤质地相适应的小麦品种, 砂土地种植‘郑麦366’, 壤土条件下种植‘矮抗58’, 黏土条件下种植‘周麦22’, 可以在获得较高产量和品质的同时, 提高氮素利用效率。
熊淑萍,张娟娟,杨阳,刘娟,王晓航,吴延鹏,马新明. 不同冬小麦品种在3种质地土壤中氮代谢特征及利用效率分析. 植物生态学报, 2013, 37(7): 601-610. DOI: 10.3724/SP.J.1258.2013.00062
XIONG Shu-Ping,ZHANG Juan-Juan,YANG Yang,LIU Juan,WANG Xiao-Hang,WU Yan-Peng,MA Xin-Ming. Research on nitrogen metabolism characteristics and use efficiency in different winter wheat cultivars grown on three soil textures. Chinese Journal of Plant Ecology, 2013, 37(7): 601-610. DOI: 10.3724/SP.J.1258.2013.00062
土壤质地 Soil texture | 有机质 Organic matter (%) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|
砂土 Sandy soil | 0.78 | 0.51 | 57.54 | 7.61 | 69 |
壤土 Loam soil | 0.98 | 0.79 | 82.54 | 24.74 | 150 |
黏土 Clay soil | 1.32 | 1.03 | 92.14 | 53.99 | 297 |
表1 不同质地土壤0-20 cm土层的养分含量
Table 1 Nutrients content in 0-20 cm soil layer of different soil texture
土壤质地 Soil texture | 有机质 Organic matter (%) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|
砂土 Sandy soil | 0.78 | 0.51 | 57.54 | 7.61 | 69 |
壤土 Loam soil | 0.98 | 0.79 | 82.54 | 24.74 | 150 |
黏土 Clay soil | 1.32 | 1.03 | 92.14 | 53.99 | 297 |
土壤质地 Soil texture | 品种 Cultivar | 产量 Yield (kg·hm-2) | 蛋白质含量 Protein content (%) | 氮素利用效率 NUE (%) | 氮素生理效率 NPE (kg·kg-1) | 氮收获指数 NHI (% ) |
---|---|---|---|---|---|---|
砂土 Sandy soil | ‘矮抗58’ ‘AK58’ | 5 266.95e | 10.50f | 13.81g | 64.45b | 70.92b |
‘周麦22’ ‘ZM22’ | 5 995.80d | 12.29d | 16.59f | 63.31b | 67.81c | |
‘郑麦366’ ‘ZM366’ | 6 040.35d | 12.38d | 17.14f | 67.97a | 77.76a | |
壤土 Loam soil | ‘矮抗58’ ‘AK58’ | 9 588.75a | 12.82cd | 38.47a | 57.63c | 70.01b |
‘周麦22’ ‘ZM22’ | 7 477.65c | 13.48c | 31.47b | 45.65f | 65.52d | |
‘郑麦366’ ‘ZM366’ | 7 560.00c | 14.18a | 29.70c | 54.64d | 69.31b | |
黏土 Clay soil | ‘矮抗58’ ‘AK58’ | 7 635.45c | 12.47d | 21.30e | 52.82e | 66.72c |
‘周麦22’ ‘ZM22’ | 8 176.35b | 14.16b | 29.36c | 52.88e | 67.14c | |
‘郑麦366’ ‘ZM366’ | 7 464.30c | 15.18a | 27.48d | 50.85f | 64.88e |
表2 三种土壤质地上不同冬小麦品种的籽粒产量、蛋白质含量和氮素利用效率、氮素生理效率、氮收获指数
Table 2 Grain yield, grain protein content, N use efficiency (NUE), N physiological efficiency (NPE) and N harvest index (NHI) in different wheat cultivars planted on three soil textures
土壤质地 Soil texture | 品种 Cultivar | 产量 Yield (kg·hm-2) | 蛋白质含量 Protein content (%) | 氮素利用效率 NUE (%) | 氮素生理效率 NPE (kg·kg-1) | 氮收获指数 NHI (% ) |
---|---|---|---|---|---|---|
砂土 Sandy soil | ‘矮抗58’ ‘AK58’ | 5 266.95e | 10.50f | 13.81g | 64.45b | 70.92b |
‘周麦22’ ‘ZM22’ | 5 995.80d | 12.29d | 16.59f | 63.31b | 67.81c | |
‘郑麦366’ ‘ZM366’ | 6 040.35d | 12.38d | 17.14f | 67.97a | 77.76a | |
壤土 Loam soil | ‘矮抗58’ ‘AK58’ | 9 588.75a | 12.82cd | 38.47a | 57.63c | 70.01b |
‘周麦22’ ‘ZM22’ | 7 477.65c | 13.48c | 31.47b | 45.65f | 65.52d | |
‘郑麦366’ ‘ZM366’ | 7 560.00c | 14.18a | 29.70c | 54.64d | 69.31b | |
黏土 Clay soil | ‘矮抗58’ ‘AK58’ | 7 635.45c | 12.47d | 21.30e | 52.82e | 66.72c |
‘周麦22’ ‘ZM22’ | 8 176.35b | 14.16b | 29.36c | 52.88e | 67.14c | |
‘郑麦366’ ‘ZM366’ | 7 464.30c | 15.18a | 27.48d | 50.85f | 64.88e |
图1 三种土壤质地上不同冬小麦品种旗叶谷氨酰胺合成酶(GS)活性(平均值±标准误差)。
Fig. 1 Glutamine synthetase (GS) activity in flag leaves of different winter wheat cultivars planted on three soil textures (mean ± SE).
图2 三种土壤质地上不同冬小麦品种旗叶游离氨基酸含量(平均值±标准误差)。
Fig. 2 Free amino acid content in flag leaves of different winter wheat cultivars planted on three soil textures (mean ± SE).
土壤质地 Soil texture | 品种 Cultivar | 地上部氮积累量 NA of aboveground plants (kg·hm-2) | 叶 Leaf | 茎秆和穗 Stem and spike | ||
---|---|---|---|---|---|---|
氮积累量 NA (kg·hm-2) | 氮素分配比例 NDR (%) | 氮积累量 NA (kg·hm-2) | 氮素分配比例NDR (%) | |||
砂土 Sandy soil | ‘矮抗58’ ‘AK58’ | 84.47g | 44.55g | 52.73c | 39.92g | 47.26c |
‘周麦22’ ‘ZM22’ | 90.26f | 45.19fg | 50.06d | 45.07f | 49.93b | |
‘郑麦366’ ‘ZM366’ | 86.67g | 46.51f | 53.65b | 40.16g | 46.34d | |
壤土 Loam soil | ‘矮抗58’ ‘AK58’ | 187.10a | 98.32a | 52.54bc | 88.78a | 47.45c |
‘周麦22’ ‘ZM22’ | 149.77d | 87.00b | 58.08a | 62.77d | 41.91b | |
‘郑麦366’ ‘ZM366’ | 125.37e | 73.42d | 58.56a | 51.95e | 41.43b | |
黏土 Clay soil | ‘矮抗58’ ‘AK58’ | 156.47c | 79.25c | 50.64d | 77.22c | 49.35b |
‘周麦22’ ‘ZM22’ | 168.65b | 88.27b | 52.33c | 80.38b | 47.66c | |
‘郑麦366’ ‘ZM366’ | 124.25e | 60.46e | 48.65e | 63.79d | 51.34a |
表3 三种土壤质地上不同冬小麦品种开花期各器官氮素积累与分配比例
Table 3 N accumulation (NA) and ratio of N distribution (NDR) among different organs at anthesis in different wheat cultivars planted on three soil textures
土壤质地 Soil texture | 品种 Cultivar | 地上部氮积累量 NA of aboveground plants (kg·hm-2) | 叶 Leaf | 茎秆和穗 Stem and spike | ||
---|---|---|---|---|---|---|
氮积累量 NA (kg·hm-2) | 氮素分配比例 NDR (%) | 氮积累量 NA (kg·hm-2) | 氮素分配比例NDR (%) | |||
砂土 Sandy soil | ‘矮抗58’ ‘AK58’ | 84.47g | 44.55g | 52.73c | 39.92g | 47.26c |
‘周麦22’ ‘ZM22’ | 90.26f | 45.19fg | 50.06d | 45.07f | 49.93b | |
‘郑麦366’ ‘ZM366’ | 86.67g | 46.51f | 53.65b | 40.16g | 46.34d | |
壤土 Loam soil | ‘矮抗58’ ‘AK58’ | 187.10a | 98.32a | 52.54bc | 88.78a | 47.45c |
‘周麦22’ ‘ZM22’ | 149.77d | 87.00b | 58.08a | 62.77d | 41.91b | |
‘郑麦366’ ‘ZM366’ | 125.37e | 73.42d | 58.56a | 51.95e | 41.43b | |
黏土 Clay soil | ‘矮抗58’ ‘AK58’ | 156.47c | 79.25c | 50.64d | 77.22c | 49.35b |
‘周麦22’ ‘ZM22’ | 168.65b | 88.27b | 52.33c | 80.38b | 47.66c | |
‘郑麦366’ ‘ZM366’ | 124.25e | 60.46e | 48.65e | 63.79d | 51.34a |
土壤质地 Soil texture | 品种 Cultivar | 地上部氮累积量 NA of above- ground plants (kg·hm-2) | 叶 Leaf | 茎和颖壳 Stem and spike | 籽粒 Grain | |||
---|---|---|---|---|---|---|---|---|
氮积累量 NA (kg·hm-2) | 氮素分配比例NDR (%) | 氮积累量 NA (kg·hm-2) | 氮素分配比例NDR(%) | 氮积累量 NA (kg·hm-2) | 氮素分配比例 NDR(%) | |||
砂土 Sandy soil | ‘矮抗58’ ‘AK58’ | 93.01i | 6.33e | 6.80f | 20.71f | 22.26b | 65.96g | 70.92b |
‘周麦22’ ‘ZM22’ | 95.80h | 7.20d | 7.51e | 23.63e | 24.66a | 64.97g | 67.81c | |
‘郑麦366’ ‘ZM366’ | 97.07g | 4.36f | 4.49g | 17.22g | 17.73c | 75.49f | 77.76a | |
壤土 Loam soil | ‘矮抗58’ ‘AK58’ | 229.18a | 34.53a | 15.06c | 34.21b | 14.92d | 160.44a | 70.01b |
‘周麦22’ ‘ZM22’ | 206.51b | 33.01a | 15.98bc | 38.19a | 18.49c | 135.31b | 65.52d | |
‘郑麦366’ ‘ZM366’ | 171.15f | 28.51b | 16.65b | 32.56c | 19.02c | 110.09e | 64.32d | |
黏土 Clay soil | ‘矮抗58’ ‘AK58’ | 186.95d | 34.35a | 18.37a | 27.86d | 14.90d | 124.74d | 66.72c |
‘周麦22’ ‘ZM22’ | 191.75c | 28.88b | 15.06c | 34.12b | 17.79c | 128.75c | 67.14c | |
‘郑麦366’ ‘ZM366’ | 182.70e | 21.26c | 11.64d | 33.76bc | 18.48c | 127.68c | 69.88b |
表4 三种土壤质地上不同冬小麦品种成熟期各器官氮素积累与分配比例
Table 4 N accumulation (NA) and N distribution ratio (NDR) among different organs at maturity in different wheat cultivars planted on three soil textures
土壤质地 Soil texture | 品种 Cultivar | 地上部氮累积量 NA of above- ground plants (kg·hm-2) | 叶 Leaf | 茎和颖壳 Stem and spike | 籽粒 Grain | |||
---|---|---|---|---|---|---|---|---|
氮积累量 NA (kg·hm-2) | 氮素分配比例NDR (%) | 氮积累量 NA (kg·hm-2) | 氮素分配比例NDR(%) | 氮积累量 NA (kg·hm-2) | 氮素分配比例 NDR(%) | |||
砂土 Sandy soil | ‘矮抗58’ ‘AK58’ | 93.01i | 6.33e | 6.80f | 20.71f | 22.26b | 65.96g | 70.92b |
‘周麦22’ ‘ZM22’ | 95.80h | 7.20d | 7.51e | 23.63e | 24.66a | 64.97g | 67.81c | |
‘郑麦366’ ‘ZM366’ | 97.07g | 4.36f | 4.49g | 17.22g | 17.73c | 75.49f | 77.76a | |
壤土 Loam soil | ‘矮抗58’ ‘AK58’ | 229.18a | 34.53a | 15.06c | 34.21b | 14.92d | 160.44a | 70.01b |
‘周麦22’ ‘ZM22’ | 206.51b | 33.01a | 15.98bc | 38.19a | 18.49c | 135.31b | 65.52d | |
‘郑麦366’ ‘ZM366’ | 171.15f | 28.51b | 16.65b | 32.56c | 19.02c | 110.09e | 64.32d | |
黏土 Clay soil | ‘矮抗58’ ‘AK58’ | 186.95d | 34.35a | 18.37a | 27.86d | 14.90d | 124.74d | 66.72c |
‘周麦22’ ‘ZM22’ | 191.75c | 28.88b | 15.06c | 34.12b | 17.79c | 128.75c | 67.14c | |
‘郑麦366’ ‘ZM366’ | 182.70e | 21.26c | 11.64d | 33.76bc | 18.48c | 127.68c | 69.88b |
土壤质地 Soil texture | 品种 Cultivar | 营养器官氮素积累量 NA in vegetative organs | 花前吸收氮素向籽粒的再分配量 NR (kg·hm-2) | 氮素再分配转运率NRE (%) | 花前转运氮对籽粒氮的贡献率 NRC (%) | 花后氮素同化量Post-anthesis N assimilation (kg·hm-2) | 花后氮素吸收量对籽粒氮的贡献率 Post-NC (%) | |
---|---|---|---|---|---|---|---|---|
开花期 Anthesis (kg·hm-2) | 成熟期 Maturity (kg·hm-2) | |||||||
砂土 Sandy soil | ‘矮抗58’ ‘AK58’ | 84.47g | 27.05e | 57.41h | 67.97b | 87.03b | 8.53e | 12.93e |
‘周麦22’ ‘ZM22’ | 90.26f | 27.99e | 62.27g | 68.98b | 95.84a | 5.53f | 8.52f | |
‘郑麦366’ ‘ZM366’ | 86.67g | 24.22f | 62.45g | 71.82a | 82.46c | 10.39e | 13.77e | |
壤土 Loam soil | ‘矮抗58’ ‘AK58’ | 187.10a | 68.75b | 118.34a | 63.25c | 73.76d | 42.08b | 26.22c |
‘周麦22’ ‘ZM22’ | 149.77d | 71.19a | 78.57d | 52.46f | 58.06e | 56.74a | 41.93b | |
‘郑麦366’ ‘ZM366’ | 125.37e | 61.07c | 64.29f | 51.28f | 58.40e | 45.78b | 41.58b | |
黏土 Clay soil | ‘矮抗58’ ‘AK58’ | 156.47c | 62.21c | 94.26c | 60.23d | 75.56d | 30.47c | 24.42c |
‘周麦22’ ‘ZM22’ | 168.65b | 63.01c | 105.65b | 62.63c | 82.05c | 23.09d | 17.94d | |
‘郑麦366’ ‘ZM366’ | 124.25e | 55.02d | 69.23e | 55.71e | 54.22f | 58.44a | 45.77a |
表5 三种土壤质地上不同冬小麦品种花前氮向籽粒再分配量、氮素转运率、转运氮对籽粒氮的贡献率及花后氮同化量和花后氮对籽粒氮贡献率
Table 5 Pre-anthesis N remobilization (NR), N remobilization efficiency (NRE), contribution of N remobilized to grain (NRC), and post-anthesis N assimilation, and its contribution to N content of grain (post-NC) in different wheat cultivars planted on three soil textures
土壤质地 Soil texture | 品种 Cultivar | 营养器官氮素积累量 NA in vegetative organs | 花前吸收氮素向籽粒的再分配量 NR (kg·hm-2) | 氮素再分配转运率NRE (%) | 花前转运氮对籽粒氮的贡献率 NRC (%) | 花后氮素同化量Post-anthesis N assimilation (kg·hm-2) | 花后氮素吸收量对籽粒氮的贡献率 Post-NC (%) | |
---|---|---|---|---|---|---|---|---|
开花期 Anthesis (kg·hm-2) | 成熟期 Maturity (kg·hm-2) | |||||||
砂土 Sandy soil | ‘矮抗58’ ‘AK58’ | 84.47g | 27.05e | 57.41h | 67.97b | 87.03b | 8.53e | 12.93e |
‘周麦22’ ‘ZM22’ | 90.26f | 27.99e | 62.27g | 68.98b | 95.84a | 5.53f | 8.52f | |
‘郑麦366’ ‘ZM366’ | 86.67g | 24.22f | 62.45g | 71.82a | 82.46c | 10.39e | 13.77e | |
壤土 Loam soil | ‘矮抗58’ ‘AK58’ | 187.10a | 68.75b | 118.34a | 63.25c | 73.76d | 42.08b | 26.22c |
‘周麦22’ ‘ZM22’ | 149.77d | 71.19a | 78.57d | 52.46f | 58.06e | 56.74a | 41.93b | |
‘郑麦366’ ‘ZM366’ | 125.37e | 61.07c | 64.29f | 51.28f | 58.40e | 45.78b | 41.58b | |
黏土 Clay soil | ‘矮抗58’ ‘AK58’ | 156.47c | 62.21c | 94.26c | 60.23d | 75.56d | 30.47c | 24.42c |
‘周麦22’ ‘ZM22’ | 168.65b | 63.01c | 105.65b | 62.63c | 82.05c | 23.09d | 17.94d | |
‘郑麦366’ ‘ZM366’ | 124.25e | 55.02d | 69.23e | 55.71e | 54.22f | 58.44a | 45.77a |
[1] |
Atkinson BS, Sparkes DL, Mooney SJ (2009). The impact of soil structure on the establishment of winter wheat (Triticum aestivum). European Journal of Agronomy, 30, 243-257.
DOI URL |
[2] |
Bechtold JS, Naiman RJ (2006). Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna. Soil Biology & Biochemistry, 38, 1325-1333.
DOI URL |
[3] |
Bernard SM, Habash DZ (2009). The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 182, 608-620.
URL PMID |
[4] | Cren M, Hirel B (1999). Glutamine synthetase in higher plants: regulation of gene and protein expression from the organ to the cell. Plant & Cell Physiology, 40, 1187-1193. |
[5] | Guo TC, Gao SJ, Wang CY, Zhu YJ, Yan YL (2005). Effects of soil texture on activities of key enzymes of starch synthesis in kernel of winter wheat cultivars with different gluten content. Scientia Agricultura Sinica, 38, 191-196. (in Chinese with English abstract) |
[ 郭天财, 高松洁, 王晨阳, 朱云集, 阎耀礼 (2005). 土壤质地对不同面筋含量冬小麦品种籽粒淀粉合成关键酶活性的影响. 中国农业科学, 38, 191-196.] | |
[6] |
Han QX, Guo TC, Wang HC, Wang YH, Yan LY (2007). Changes of total nitrogen in flag leaves and protein in kernels during grain filling of winter wheat in different texture soils. Journal of Triticeae Crops, 27, 677-681. (in Chinese with English abstract)
DOI URL |
[ 韩巧霞, 郭天财, 王化岑, 王永华, 阎凌云 (2007). 不同土壤质地条件下小麦旗叶全氮和籽粒蛋白质含量的变化. 麦类作物学报, 27, 677-681.]
DOI URL |
|
[7] |
Han QX, Guo TC, Yan LY, Feng W, Wang YH (2009). Effects of soil textures on some physiological functions of flag leaves of wheat. Journal of Triticeae Crops, 29, 639-642. (in Chinese with English abstract)
DOI URL |
[ 韩巧霞, 郭天财, 阎凌云, 冯伟, 王永华 (2009). 土壤质地对小麦旗叶部分生理活性的影响. 麦类作物学报, 29, 639-642.]
DOI URL |
|
[8] |
Jalota SK, Singh S, Chahal GBS, Ray SS, Panigraghy S, Bhupinder-Singh, Singh KB (2010). Soil texture, climate and management effects on plant growth, grain yield and water use by rainfed maize-wheat cropping system: field and simulation study. Agricultural Water Management, 97, 83-90.
DOI URL |
[9] | Lan T, Jiang D, Xie ZJ, Dai TB, Jing Q, Cao WX (2004). Effects of post-anthesis drought and waterlogging on grain quality traits in different specialty wheat varieties. Journal of Soil and Water Conservation, 18, 193-196. (in Chinese with English abstract) |
[ 兰涛, 姜东, 谢祝捷, 戴廷波, 荆奇, 曹卫星 (2004). 花后土壤干旱和渍水对不同专用小麦籽粒品质的影响. 水土保持学报, 18, 193-196.] | |
[10] | Li CH, Lu DW, Jing J, Hou S, Xin BP (1996). Hydrothermal regime of different texture soils and its effect on grain formation of winter wheat. Chinese Journal of Applied Ecology, 7(Suppl.), 33-38. (in Chinese with English abstract) |
[ 李潮海, 卢道文, 荆棘, 侯松, 辛保平 (1996). 不同质地土壤的水热状况及其对冬小麦产量形成的影响. 应用生态学报, 7(增刊), 33-38.] | |
[11] | Li JM, Wang ZL, Yin YP, Gao RQ, Li SF, Yan SH, Yu AL (2009). Comparison of nitrogen metabolism and activities of the related enzymes during grain filling stage among wheat cultivars differing in protein content. Scientia Agricultura Sinica, 42, 3078-3086. (in Chinese with English abstract) |
[ 李建敏, 王振林, 尹燕枰, 高荣岐, 李圣福, 闫素辉, 于安玲 (2009). 不同蛋白质含量小麦品种籽粒形成期氮代谢及相关酶活性的比较. 中国农业科学, 42, 3078-3086.] | |
[12] | Ma XM, Li L, Zhao P, Xiong SP, Guo F (2005). Effect of water control on activities of nitrogen assimilation enzymes and grain quality in winter wheat. Acta Phytoecologica Sinica, 29, 48-53. (in Chinese with English abstract) |
[ 马新明, 李琳, 赵鹏, 熊淑萍, 郭飞 (2005). 土壤水分对强筋小麦‘豫麦34’氮素同化酶活性和籽粒品质的影响. 植物生态学报, 29, 48-53.] | |
[13] |
Masoni A, Ercoli L, Mariotti M, Arduini I (2007). Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. European Journal of Agronomy, 26, 179-186.
DOI URL |
[14] |
Nicolas ME, Turner MC (1993). Use of chemical desiccants and senescing agents to select wheat lines maintaining stable grain size during post-anthesis drought. Field Crops Research, 31, 155-171.
DOI URL |
[15] |
Nyiraneza J, Cambouris AN, Ziadi N, Tremblay N, Nolin MC (2012). Spring wheat yield and quality related to soil texture and nitrogen fertilization. Agronomy Journal, 104, 589-599.
DOI URL |
[16] | Pan J, Jiang D, Dai TB, Lan T, Cao WX (2005). Variation in wheat grain quality grown under different climatic conditions with different sowing dates. Acta Phytoecologica Sinica, 29, 467-473. (in Chinese with English abstract) |
[ 潘洁, 姜东, 戴廷波, 兰涛, 曹卫星 (2005). 不同生态环境与播种期下小麦籽粒品质变异规律的研究. 植物生态学报, 29, 467-473.] | |
[17] |
Papakosta DK, Gagianas AA (1991). Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agronomy Journal, 83, 864-870.
DOI URL |
[18] | Wang HG, Jiang LJ, Zhang DS, Kong LR, Li SS (1995). Studies on the relationship between grain protein content and the NR activity, free amino acid and crude protein content of leaf blade in wheat. Acta Botanica Boreali-Occiden- talia Sinica, 15, 282-287. (in Chinese with English abstract) |
[ 王洪刚, 姜丽君, 张德水, 孔令让, 李斯深 (1995). 小麦叶片中硝酸还原酶活性、游离氨基酸和粗蛋白含量与籽粒蛋白质含量关系研究. 西北植物学报, 15, 282-287.] | |
[19] |
Wang WJ, He JH, Lian YX (2008). Effects of soil texture on activities of SPS, SS, and relationship with starch accumulation during grain filling in wheat. Acta Agronomica Sinica, 34, 1836-1842. (in Chinese with English abstract)
DOI URL |
[ 王文静, 何金环, 连艳鲜 (2008). 土壤质地对小麦SPS、SS活性及其与淀粉合成关系的影响. 作物学报, 34, 1836-1842.]
DOI URL |
|
[20] | Wang XC, Xiong SP, Ma XM, Zhang JJ, Wang ZQ (2005). Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars. Acta Ecologica Sinica, 25, 802-807. (in Chinese with English abstract) |
[ 王小纯, 熊淑萍, 马新明, 张娟娟, 王志强 (2005). 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响. 生态学报, 25, 802-807.] | |
[21] |
Wu YZ, Huang M, Gallichand J (2011). Transpirational response to water availability for winter wheat as affected by soil textures. Agricultural Water Management, 98, 569-576.
DOI URL |
[22] |
Zhou CJ, Zhang SW, Wang LQ, Miao F (2006). Studies on nitrogen uptake and accumulation of cold type wheat. Plant Nutrition and Fertilizer Science, 12, 162-168. (in Chinese with English abstract)
DOI URL |
[ 周春菊, 张嵩午, 王林权, 苗芳 (2006). 冷型小麦氮素吸收积累特性的研究. 植物营养与肥料学报, 12, 162-168.]
DOI URL |
[1] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[4] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[5] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[6] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[7] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[8] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[9] | 孙文泰, 马明. 黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J]. 植物生态学报, 2021, 45(9): 972-986. |
[10] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[11] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[12] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[13] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[14] | 舒树淼, 朱万泽, 冉飞, 孙守琴, 张元媛. 贡嘎山峨眉冷杉成熟林碳利用效率季节动态及其影响因子[J]. 植物生态学报, 2020, 44(11): 1127-1137. |
[15] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19