植物生态学报 ›› 2015, Vol. 39 ›› Issue (4): 371-382.DOI: 10.17521/cjpe.2015.0036
收稿日期:
2014-07-07
接受日期:
2015-02-15
出版日期:
2015-04-01
发布日期:
2015-04-21
通讯作者:
牟溥
作者简介:
# 共同第一作者
基金资助:
PAN Lu1, MOU Pu1,*(), BAI Shang-Bin2, GU Mu1
Received:
2014-07-07
Accepted:
2015-02-15
Online:
2015-04-01
Published:
2015-04-21
Contact:
Pu MOU
About author:
# Co-first authors
摘要:
毛竹(Phyllostachys heterocycla ‘Pubescens’)凭借其独特的生长特性极易扩张进入周边的常绿或针阔混交森林群落并取而代之。菌根减弱假说对毛竹林扩张导致周边林分枯亡并抑制林下幼苗更新的机制进行了解释, 即毛竹林的成功扩张是由于毛竹蔓延引起森林群落的菌根系统紊乱, 使宿主植物与菌根真菌的共生关系受到干扰, 进而影响了宿主植物的分布与更新。该研究以浙江省西天目山国家自然保护区为研究区域, 对菌根减弱假说进行了检验。通过在毛竹-针阔混交林交接区沿毛竹扩张方向设置毛竹纯林、竹-林过渡带、针阔混交林3种类型的样带, 选取在针阔混交林、竹-林过渡带同时存在的6种优势乔灌树种——杉木(Cunninghamia lanceolata)、枫香树(Liquidambar formosana)、青冈(Cyclobalanopsis glauca)、柳杉(Cryptomeria fortunei)、江浙山胡椒(Lindera chienii)、毛柄连蕊茶(Camellia fraterna), 测定这6个树种在两样带中的菌根侵染频率和强度, 检测在毛竹林扩张中周边森林群落菌根的响应, 同时对比了毛竹在毛竹纯林和竹-林过渡带菌根感染率和强度的变化, 检验该假设。实验结果表明: 1)针阔混交林和竹-林过渡带的主要树种菌根都具有较高的菌根侵染频率(> 95%), 且不同林分间林木的侵染频率无显著差异(p > 0.1); 2)在竹-林过渡带杉木和江浙山胡椒的丛枝菌根侵染强度较针阔混交林明显增加(p < 0.1); 3)毛竹的丛枝菌根侵染频率和强度远低于其他针阔树种, 且在扩张前后没有显著变化(p > 0.1)。实验结果否定菌根减弱假说。
潘璐, 牟溥, 白尚斌, 古牧. 毛竹林扩张对周边森林群落菌根系统的影响. 植物生态学报, 2015, 39(4): 371-382. DOI: 10.17521/cjpe.2015.0036
PAN Lu,MOU Pu,BAI Shang-Bin,GU Mu. Impact of Phyllostachys heterocycla ‘Pubescens’ expansion on mycorrhizal associations of the adjacent forests. Chinese Journal of Plant Ecology, 2015, 39(4): 371-382. DOI: 10.17521/cjpe.2015.0036
图1 试验地样带布设示意图。从毛竹纯林到针阔混交林, 海拔逐渐升高。
Fig. 1 Diagram of belt transects in the experimental area. The altitude gradually increased from PPF to CBF. BFT, bamboo-forest transition; CBF, coniferous and broad-leaved mixed forest; PPF, Phyllostachys heterocycla ‘Pubescens’ forest.
图2 丛枝菌根形态(墨水染色)。A, 杉木侵染根尖段。B, 杉木菌根内菌丝(箭头所示)。C, 杉木菌根丛枝结构(箭头所示)。D, 毛柄连蕊茶侵染根尖段。E, 毛柄连蕊茶菌根丛枝结构(箭头所示)。F, 毛柄连蕊茶菌根孢子(箭头所示)。G, 江浙山胡椒侵染根尖段。H, 江浙山胡椒菌根孢子(箭头所示)。I, 江浙山胡椒丛枝结构(箭头所示)。
Fig. 2 Morphology of arbuscular mycorrhiza, stained with ink. A, An infected root tip of Cunninghamia lanceolata. B, Arrow indicates intraradical hyphae in a root of Cunninghamia lanceolata. C, Arrow indicates arbuscules in a root of Cunninghamia lanceolata. D, A infected root tip of Camellia fraterna. E, Arrow indicates arbuscules in a root of Camellia fraterna. F, Arrow indicates a fungal spore in a root of Camellia fraterna. G, An infected root tip of Lindera chienii. H, Arrow indicates two fungal spores in a root of Lindera chienii. I, Arrow indicates arbuscules in a root of Lindera chienii.
图3 枫香树(A-C)、柳杉(D-F)、青冈(G-I)外生菌根形态。
Fig. 3 Morphology of ectomycorrhiza in Liquidambar formosana (A-C), Cryptomeria fortunei (D-F), and Cyclobalanopsis glauca (G-I).
图4 试验地3种林分的土壤pH值(A)、含水量(B)、铵态氮(C)、硝态氮(D)、总有效氮(E)对比(平均值±标准误差)。BFT, 竹-林过渡带; CBF, 针阔混交林; PPF, 毛竹纯林。不同小写字母表示同一林型中离毛竹根远近距离的土壤养分指标差异显著(p < 0.1)。
Fig. 4 Comparison of soil pH value (A), soil water content (B), NH4+-N (C), NO3--N (D), total available N (NH4+-N + NO3--N) (E) contents in three stands in the study site (mean ± SE). BFT, bamboo-forest transition; CBF, coniferous and broad-leaved mixed forest; PPF, Phyllostachys heterocycla ‘Pubescens’ forest. Different lowercase letters denote significant difference among soil nutrients due to the different distance to bamboo roots in the same forest stand (p < 0.1).
样地类型 Stand type | n | 土壤有效氮含量 Soil available N content (mg·kg-1) | ||
---|---|---|---|---|
铵态氮 NH4+-N (mg·kg-1) | 硝态氮1) NO3--N (mg·kg-1)1) | 铵态氮+硝态氮 NH4+-N + NO3--N (mg·kg-1) | ||
毛竹纯林 Phyllostachys heterocycla ‘Pubescens’ forest | 10 | 0.026 8 ± 0.002 0a | 0.002 1 ± 0.000 3b | 0.029 0 ± 0.002 1a |
竹-林过渡带 Bamboo-forest transition | 10 | 0.024 1 ± 0.002 2ab | 0.005 2 ± 0.000 6a | 0.029 3 ± 0.002 3a |
针阔混交林 Coniferous and broad-leaved mixed forest | 5 | 0.197 0 ± 0.000 5b | 0.003 7 ± 0.000 2a | 0.023 4 ± 0.000 4a |
表1 浙江天目山禅源寺附近林区研究林地3种森林类型的土壤有效氮含量(平均值±标准误差)
Table 1 Available nitrogen contents in soil of three forest stands in experimental area near Chanyuan Temple, Tianmu Mountain, Zhejiang Province, China (mean ± SE)
样地类型 Stand type | n | 土壤有效氮含量 Soil available N content (mg·kg-1) | ||
---|---|---|---|---|
铵态氮 NH4+-N (mg·kg-1) | 硝态氮1) NO3--N (mg·kg-1)1) | 铵态氮+硝态氮 NH4+-N + NO3--N (mg·kg-1) | ||
毛竹纯林 Phyllostachys heterocycla ‘Pubescens’ forest | 10 | 0.026 8 ± 0.002 0a | 0.002 1 ± 0.000 3b | 0.029 0 ± 0.002 1a |
竹-林过渡带 Bamboo-forest transition | 10 | 0.024 1 ± 0.002 2ab | 0.005 2 ± 0.000 6a | 0.029 3 ± 0.002 3a |
针阔混交林 Coniferous and broad-leaved mixed forest | 5 | 0.197 0 ± 0.000 5b | 0.003 7 ± 0.000 2a | 0.023 4 ± 0.000 4a |
图5 试验地丛枝菌根树种杉木、毛柄连蕊茶、江浙山胡椒在毛竹-针阔混交林竞争界面两侧的菌根侵染频率和强度对比(平均值±标准误差)。BFT, 竹-林过渡带; CBF, 针阔混交林。不同小写字母表示不同样带的差异显著(p < 0.1)。
Fig. 5 Comparison of frequency and intensity of the arbuscular mycorrhizal fungi root colonization of Cunninghamia lanceolata (A), Camellia fraternal (B), Lindera chienii (C) at two sides of bamboo and broad-leaved forest interface in the study site (mean ± SE). BFT, bamboo-forest transition; CBF, coniferous and broad-leaved mixed forest. Different lowercase letters denote significant difference among different forest stands (p < 0.1).
图6 试验地外生菌根树种枫香树、柳杉、青冈在竹-针阔竞争界面两侧的菌根侵染频率对比(平均值±标准误差)。BFT, 竹-林过渡带; CBF, 针阔混交林。相同小写字母表示同一树种在不同样带的侵染频率差异不显著(p < 0.1)。
Fig. 6 Comparison of frequency of the ectomycorrhizal fungi root colonization in Liquidambar formosana, Cryptomeria fortune, Cyclobalanopsis glauca at two sides of bamboo and broad-leaved forest interface in the study site (mean ± SE). BFT, bamboo-forest transition; CBF, coniferous and broad- leaved mixed forest. Same lowercase letter denotes insignificant difference between the same species in different stands (p < 0.1).
图7 试验地毛竹在竹-林过渡带、毛竹纯林的菌根侵染频率和强度对比(平均值±标准误差)。BFT, 竹-林过渡带; PPF, 毛竹纯林。相同小写字母表示同一树种在不同样带的侵染频率差异不显著(p < 0.1)。
Fig. 7 Comparison of frequency and intensity of the arbuscular mycorrhizal fungi root colonization of Phyllostachys heterocycla ‘Pubescens’ at coniferous and broad-leaved mixed forest and coniferous and broad-leaved mixed forest in the study site (mean ± SE). BFT, bamboo-forest transition; PPF, Phyllostachys heterocycla ‘Pubescens’ forest. Same lowercase letter denotes insignificant difference between the same species in different stands (p < 0.1).
图8 毛竹丛枝菌根形态(墨水染色)。A, 箭头所示为胞内的丛枝结构。B, 箭头所示为根内孢子。
Fig. 8 Morphology of arbuscular mycorrhiza of Phyllostachys heterocycla ‘Pubescens’ stained with ink. A, Arrow indicates arbuscules in the root cells. B, Arrow indicates a fungal spore in a bamboo root.
[35] | Wu JS, Jiang PK, Wang ZL (2008). The effects of Phyllostachys pubescens expansion on soil fertility in national nature reserve of Mount Tianmu.Acta Agriculturae Universitatis Jiangxiensis, 30, 689-692.(in Chinese with English abstract) |
[吴家森, 姜培坤, 王祖良 (2008). 天目山国家级自然保护区毛竹扩张对林地土壤肥力的影响. 江西农业大学学报, 30, 689-692.] | |
[36] | Yang H, Li PX, Dai HT, Liu D, Yao XS (2010). Effects of Phyllostachys pubescens expansion on plant species diversity in Jigong Mountain and discussion of control measures.Journal of Xinyang Normal University Natural Science Edition, 23, 553-557.(in Chinese with English abstract) |
[杨怀, 李培学, 戴慧堂, 刘丹, 姚贤胜 (2010). 鸡公山毛竹扩张对植物多样性的影响及控制措施. 信阳师范学院学报(自然科学版), 23, 553-557.] | |
[37] | Yang QP, Wang B, Guo QR, Zhao GD, Fang K, Liu YQ (2011). Effects of Phyllostachys edulis expansion on carbon storage of evergreen broad-leaved forest in Dagangshan Mountain, Jiangxi.Acta Agriculturae Universitatis Jiangxiensis, 33, 529-536.(in Chinese with English abstract) |
[杨清培, 王兵, 郭起荣, 赵广东, 方楷, 刘苑秋 (2011). 大岗山毛竹扩张对常绿阔叶林生态系统碳储特征的影响. 江西农业大学学报, 33, 529-536.] | |
[38] | Zhang CS, Chen JH, Zhu F (2007). Survey and analysis on development law in Phyllostachys heterocycla cv. Pubescens.Nonwood Forest Research, 25(4), 74-76.(in Chinese with English abstract) |
[张春生, 陈建华, 朱凡 (2007). 毛竹生长发育规律的调查分析. 经济林研究, 25(4), 74-76.] | |
[39] | Zheng YS, Hong W (1998). A study on age structure model of bamboo stand and its application.Scientia Silvae Sinicae, 34(3), 34-41.(in Chinese with English abstract) |
[郑郁善, 洪伟 (1998). 毛竹林丰产年龄结构模型与应用研究. 林业科学, 34(3), 34-41.] | |
[40] | Zhou WW (1991). An analysis of the influence of precipitation on the growth of bamboo forest.Journal of Bamboo Research, 10(2), 33-39.(in Chinese with English abstract) |
[周文伟 (1991). 降水对毛竹林生长的影响分析. 竹子研究汇刊, 10(2), 33-39. | |
[41] | Zhu CL, Shangguan LP (2009). Preliminary study on the influence of the expansion edge on biodiversity of moso bamboo forest in Jinggang Mountain.Territory & Natural Resources Study, (3), 45-46.(in Chinese with English abstract) |
[朱长龙, 上官林平 (2009). 井冈山毛竹林扩边对生物多样性的影响初探. 国土与自然资源研究, (3), 45-46.] | |
[1] | Aerts R (2002). The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: van der Heijden MGA, Sanders IR eds. Mycorrhizal Ecology. Springer-Verlag, Berlin. 117-133. |
[2] | Bai SB, Zhou GM, Wang YX, Liang QQ, Chen J, Cheng YY, Shen R (2013). Allelopathic potential of Phyllostachys edulis on two dominant tree species of evergreen broad-leaved forest in its invasive process.Environmental Science, 34, 4066-4072.(in Chinese with English abstract) |
[白尚斌, 周国模, 王懿祥, 梁倩倩, 陈娟, 程艳艳, 沈蕊 (2013). 毛竹入侵对常绿阔叶林主要树种的化感作用研究. 环境科学, 34, 4066-4072.] | |
[3] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing.(in Chinese) |
[鲍士旦 (2000). 土壤农化分析. 第三版. 中国农业出版社, 北京.] | |
[4] | Becklin KM, Pallo ML, Galen C (2012). Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities.Journal of Ecology, 100, 343-351. |
[5] | Bormann FH, Likens GE (1979). Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York. |
[6] | Cai L, Zhang RL, Li CF, Ding Y (2003). A method to inhibit the expansion of Phyllostachys pubescens stands based on the analysis of underground rhizome.Journal of Northeast Forestry University, 31(5), 68-70.(in Chinese with English abstract) |
[蔡亮, 张瑞霖, 李春福, 丁滪 (2003). 基于竹鞭状态分析的抑制毛竹林扩散的方法. 东北林业大学学报, 31(5), 68-70.] | |
[7] | Chen XX, Chen LQ (1983). Investigation on mycorrhizae of main tree species my in subtropical area of China.Forest Science and Technology, (5), 8-12.(in Chinese) |
[陈祥欣, 陈连庆 (1983). 我国亚热带主要树种菌根调查. 林业科技通讯, (5), 8-12.] | |
[8] | Chou CH, Yang CM (1982). Allelopathic research of subtropical vegetation in Taiwan II. Comparative exclusion of understory by Phyllostachys edulis and Cryptomeria japonica.Journal of Chemical Ecology, 8, 1489-1507. |
[9] | Smith FA, Smith SE, Timonen (2003). Mycorrhizas. In: de Kroon H, Visser EJW eds. Root Ecology. Springer-Verlag, Berlin. 257-295. |
[10] | Ding LX, Wang ZL, Zhou GM, Du QZ (2006). Monitoring Phyllostachys pubescens stands expansion in national nature reserve of Mount Tianmu by remote sensing.Journal of Zhejiang Forestry College, 23, 297-300.(in Chinese with English abstract) |
[丁丽霞, 王祖良, 周国模, 杜晴洲 (2006). 天目山国家级自然保护区毛竹林扩张遥感监测. 浙江林学院学报, 23, 297-300.] | |
[11] | Dong M (1996). Plant clonal growth in heterogeneous habitats: risk-spreading.Acta Phytoecologica Sinica, 20, 543-548.(in Chinese with English abstract) |
[董鸣 (1996). 异质性生境中的植物克隆生长: 风险分摊. 植物生态学报, 20, 543-548.] | |
[12] | Fitter AH, Moyersoen B (1996). Evolutionary trends in root-microbe symbioses.Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 351, 1367-1375. |
[13] | Gong MQ, Chen YL, Zhong CL (1997). Mycorrhizal Research and Application. China Forestry Publishing House, Beijing.(in Chinese) |
[弓明钦, 陈应龙, 仲崇禄 (1997). 菌根研究及应用. 中国林业出版社, 北京.] | |
[14] | Hong W, Hu XS, Wu CZ, Yan SJ, Feng L, Lin YM (2004). Comparison study on community structure features of the mixed forest of Phyllostachys pubescences in Fujian Province.Journal of Plant Resources and Environment, 13(1), 37-42.(in Chinese with English abstract) |
[洪伟, 胡喜生, 吴承祯, 闫淑君, 封磊, 林勇明 (2004). 福建省毛竹混交林群落结构特征的比较. 植物资源与环境学报, 13(1), 37-42.] | |
[15] | Huang QT (2008). Effect of leaf and root allelochemicals of Phyllostachys heterocycla cv. pubescens on germination of Chinese fir seed.Journal of Fujian Forestry Science and Technology, 35(2), 75-77.(in Chinese with English abstract) |
[黄启堂 (2008). 毛竹叶及其竹鞭生化物质对杉木种子的发芽效应. 福建林业科技, 35(2), 75-77.] | |
[16] | Johnson NC, Graham JH (2013). The continuum concept remains a useful framework for studying mycorrhizal functioning.Plant and Soil, 363, 411-419. |
[17] | Johnson NC, Graham JH, Smith FA(1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum.New Phytologist, 135, 575-585. |
[18] | Li GC, Han XG, Huang JH, Tang JW (2001). A review of affecting factors of soil nitrogen mineralization in forest ecosystems.Acta Ecologica Sinica, 21, 1187-1195.(in Chinese with English abstract) |
[李贵才, 韩兴国, 黄建辉, 唐建维 (2001). 森林生态系统土壤氮矿化影响因素研究进展. 生态学报, 21, 1187-1195.] | |
[19] | Li SX (2008). Soil and Plant Nitrogen in Dryland Areas of China. Science Press, Beijing.(in Chinese) |
[李生秀 (2008). 中国旱地土壤植物氮素. 科学出版社, 北京.] | |
[20] | Li ZY (1993). Study on effect of soil on diameter eye-high growth of Phyllostachys pubescens.Journal of Bamboo Research, 12(3), 29-36.(in Chinese with English abstract) |
[黎祖尧 (1993). 土壤对毛竹眉径生长影响的研究. 竹子研究汇刊, 12(3), 29-36.] | |
[21] | Liang QQ, Bai SB, Zhou GM, Wang YX, Liao J (2012). Effect of aqueous extracts of Phyllostachys heterocycla cv. Pubescens on seed germination and seedling growth of Festuca arundinacea.Acta Agriculturae Zhejiangensis, 24, 434-439.(in Chinese with English abstract) |
[梁倩倩, 白尚斌, 周国模, 王懿祥, 廖娟 (2012). 毛竹浸提液对高羊茅种子萌发及幼苗生长的影响. 浙江农业学报, 24, 434-439.] | |
[22] | Liu J, Yang QP, Song QN, Yu DK, Yang GY, Qi HY, Shi JM (2013). Strategy of fine root expansion of Phyllostachys pubescens population into evergreen broad-leaved forest.Chinese Journal of Plant Ecology, 37, 230-238.(in Chinese with English abstract) |
[刘骏, 杨清培, 宋庆妮, 余定坤, 杨光耀, 祁红艳, 施建敏 (2013). 毛竹种群向常绿阔叶林扩张的细根策略. 植物生态学报, 37, 230-238.] | |
[23] | Liu S (2010). The Influence of the Changes of Light Environment on the Other Species in Phyllostachys edulis Stands. Master degree dissertation, Zhejiang A&F University, Lin’an, Zhejiang. 24-51.(in Chinese with English abstract) |
[刘烁 (2010). 毛竹蔓延过程中林内光环境变化对其他树种的影响. 硕士学位论文, 浙江农林大学, 浙江临安. 24-51.] | |
[24] | Okutomi K, Shinoda S, Fukuda H (1996). Causal analysis of the invasion of broad-leaved forest by bamboo in Japan.Journal of Vegetation Science, 7, 723-728. |
[25] | Smith FA, Smith SE (2013). How useful is the mutualism- parasitism continuum of arbuscular mycorrhizal functioning?Plant and Soil, 363, 7-18. |
[26] | Song QN, Yang QP, Liu J, Yu DK, Fang K, Xu P, He YJ (2013). Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest.Chinese Journal of Applied Ecology, 24, 338-344.(in Chinese with English abstract) |
[宋庆妮, 杨清培, 刘骏, 余定坤, 方楷, 徐佩, 何宇娟 (2013). 毛竹扩张对常绿阔叶林土壤氮素矿化及有效性的影响. 应用生态学报, 24, 338-344.] | |
[27] | Su LY, Cheng AX, Yu AL, Fu WQ, Zheng PY (1992). Investigation on mycorrhizae of forest trees in Natural Reserve of Mount Tianmu.Journal of Zhejiang Forestry College, 9, 263-276.(in Chinese with English abstract) |
[苏琍英, 程爱兴, 喻爱林, 傅卫庆, 郑平谣 (1992). 天目山自然保护区林木菌根调查. 浙江林学院学报, 9, 263-276.] | |
[28] | Suzuki S, Nakagoshi N (2008). Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions.Ecological Research, 23, 641-647. |
[29] | Suzuki T, Nakatsubo T (2001). Impact of the bamboo Phyllostachys bambusoides on the light environment and plant communities on riverbanks.Journal of Forest Research, 6, 81-86. |
[30] | The Editorial Board of Forest in China (2000). Forest in China Vol. 4. China Forestry Publishing House, Beijing.(in Chinese) |
[《中国森林》编辑委员会 (2000). 中国森林. 第4卷. 中国林业出版社出版, 北京.] | |
[31] | Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986). Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S eds. Physiological and Genetical Aspects of Mycorrhizae. INRA Press, Paris. 217-221. |
[32] | Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998). Ink and vinegar, a simple staining technique for arbuscular- mycorrhizal fungi.Applied and Environmental Microbiology, 64, 5004-5007. |
[33] | Vogelsang KM, Bever JD (2009). Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion.Ecology, 90, 399-407. |
[34] | Widden P (2001). The use of glycerin jelly for mounting stained roots for the observation and quantification of endomycorrhizal fungi.Mycologia, 93, 1026-1027. |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[4] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[5] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[6] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[7] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[8] | 冯印成, 王云琦, 王玉杰, 王凯, 王松年, 王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子[J]. 植物生态学报, 2022, 46(8): 890-903. |
[9] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[10] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[11] | 单婷婷, 陈彤垚, 陈晓梅, 郭顺星, 王爱荣. 菌根真菌与兰科植物氮营养关系的研究进展[J]. 植物生态学报, 2022, 46(5): 516-528. |
[12] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[13] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[14] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[15] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19