植物生态学报 ›› 2015, Vol. 39 ›› Issue (5): 433-441.DOI: 10.17521/cjpe.2015.0042
• • 下一篇
刘修元1,2, 杜恩在3, 徐龙超1,2, 沈海花1, 方精云1, 胡会峰1*()
收稿日期:
2015-03-16
接受日期:
2015-04-22
出版日期:
2015-05-01
发布日期:
2015-05-26
作者简介:
*作者简介:E-mail:
基金资助:
LIU Xiu-Yuan1,2, DU En-Zai3, XU Long-Chao1,2, SHEN Hai-Hua1, FANG Jing-Yun1, HU Hui-Feng1,*()
Received:
2015-03-16
Accepted:
2015-04-22
Online:
2015-05-01
Published:
2015-05-26
Contact:
Hui-Feng HU
About author:
# Co-first authors
摘要:
氮沉降对树木生长的影响是全球变化研究的一个核心问题。该文通过设置4种氮添加水平(对照(0)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)), 研究了模拟氮沉降对落叶松(Larix gmelinii)原始林树木胸径生长的影响。结果表明: 中氮和高氮添加对落叶松胸径相对生长率有显著影响, 而且这种影响随施氮年限的增加而增强。不同高度的树木对氮添加的响应有很大差异, 较低树木(树高<16.5 m)的生长对氮添加无显著响应, 而较高(树高>16.5 m)的树木在中氮和高氮处理下胸径生长有显著加速(胸径相对生长率增幅>79.5%), 但随着树木高度的进一步增加, 这种加速作用明显下降。研究结果显示氮添加会促进落叶松胸径生长, 这种促进作用主要发生在较高的落叶松个体中。
刘修元, 杜恩在, 徐龙超, 沈海花, 方精云, 胡会峰. 落叶松原始林树木生长对氮添加的响应. 植物生态学报, 2015, 39(5): 433-441. DOI: 10.17521/cjpe.2015.0042
LIU Xiu-Yuan,DU En-Zai,XU Long-Chao,SHEN Hai-Hua,FANG Jing-Yun,HU Hui-Feng. Response of tree growth to nitrogen addition in a Larix gmelinii primitive forest. Chinese Journal of Plant Ecology, 2015, 39(5): 433-441. DOI: 10.17521/cjpe.2015.0042
图1 落叶松原始林样地胸径和树高频率分布图(杜恩在, 2013)。
Fig. 1 Diameter at breast height (DBH) and tree height frequency distribution in Larix gmelinii primitive forest stand (Du, 2013).
方差来源 Sources of variation | df | 均方 Mean square | F | p |
---|---|---|---|---|
氮添加 N addition | 3 | 4.21 | 32.64 | <0.001 |
年份 Year | 2 | 11.26 | 87.31 | <0.001 |
氮添加×年份 N addition × Year | 6 | 0.19 | 1.44 | 0.20 |
误差 Residuals | 1 107 | 0.13 |
表1 落叶松胸径相对生长率与氮添加和年份的双因素方差分析
Table 1 Two-way ANOVA between Larix gmelinii diameter at breast height relative growth rate and N addition and year
方差来源 Sources of variation | df | 均方 Mean square | F | p |
---|---|---|---|---|
氮添加 N addition | 3 | 4.21 | 32.64 | <0.001 |
年份 Year | 2 | 11.26 | 87.31 | <0.001 |
氮添加×年份 N addition × Year | 6 | 0.19 | 1.44 | 0.20 |
误差 Residuals | 1 107 | 0.13 |
图3 不同年份落叶松胸径相对生长率对不同氮添加水平的响应。字母a和b表示各年份中不同施氮水平落叶松胸径相对生长率的多重比较显著水平(p < 0.05)。
Fig. 3 Responses of Larix gmelinii diameter at breast height (DBH) relative growth rate under different N treatments in different years. a and b represent the significant level of multiple comparisons of mean DBH relevant growth rate under different N treatments in each year (p < 0.05).
![]() |
表2 2012-2014年各树高级落叶松胸径相对生长率(%)(平均值±标准误差)
Table 2 Larix gmelinii diameter at breast height relevant growth rate(%) of all tree height classes from 2012 to 2014(mean±SE)
![]() |
图4 落叶松胸径相对生长率与树高和氮添加的协方差分析。实线表示胸径相对生长率与树高存在显著相关关系(p < 0.05); 虚线表示胸径相对生长率与树高不存在显著相关关系, 但单因素方差分析显示各氮添加处理间存在显著差异(p < 0.01)。只有点而无线段则表示胸径相对生长率与树高不存在显著相关关系, 且单因素方差分析显示各氮添加处理间不存在显著差异。
Fig. 4 The analysis of covariance (ANCOVA) between Larix gmelinii diameter at breast height (DBH) relevant growth rate and tree height and N addition. The solid line represents there exists significant correlativity between DBH relevant growth rate and tree height (p < 0.05). The dash line represents there does not exist significant correlativity between DBH relevant growth rate and tree height, but the ANOVA shows significant difference between different nitrogen treatments (p < 0.01). The figure with only point represents there does not exist significant correlativity between DBH relevant growth rate and tree height, and the ANOVA shows no significant difference between different nitrogen treatments.
1 | Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems―hypotheses revisited. BioScience, 48, 921-934. |
2 | Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis.Ecological Applications, 20, 30-59. |
3 | Chen YL, Han SJ, Su BL (2001). Effects of different n sources on growth, nutrient uptake and ionic balance of Larix gmelinii seedlings.Journal of Forestry Research, 12, 153-156. |
4 | Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze ED, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008). Carbon accumulation in European forests.Nature Geoscience, 1, 425-429. |
5 | de Vries W, Du EZ, Butterbach-Bahl K (2014). Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Current Opinion in Environmental Sustainability, 9-10, 90-104. |
6 | de Vries W, Reinds GJ, Vel E (2003). Intensive monitoring of forest ecosystems in Europe: 2: Atmospheric deposition and its impacts on soil solution chemistry.Forest Ecology and Management, 174, 97-115. |
7 | de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhahn D, Reinds GJ, Nabuurs G-J, Gundersen P, Sutton MA (2008). Ecologically implausible carbon response?Nature, 451, E1-E3. |
8 | Du EZ, Zhou Z, Li P, Hu XY, Ma YC, Wang W, Zheng CY, Zhu JX, He JS, Fang JY (2013). NEECF: A project of nutrient enrichment experiments in China’s forests.Journal of Plant Ecology, 6, 428-435. |
9 | Du EZ (2013). Impacts of Nitrogen Enrichment on Carbon Cycling in an Old-growth Larch (Larix gmelinii Rupr.) Forest. PhD dissertation, Peking University, Beijing.(in Chinese with English abstract) |
[杜恩在 (2013). 氮添加对兴安落叶松原始林碳收支主要过程的影响. 博士学位论文, 北京大学, 北京.] | |
10 | Du EZ, Fang JY (2014). Weak growth response to nitrogen deposition in an old-growth boreal forest. Ecosphere, 5, 9. |
11 | Du EZ, Liu XY, Fang JY (2014). Effects of nitrogen additions on biomass, stoichiometry and nutrient pools of moss Rhytidium rugosum in a boreal forest in Northeast China.Environmental Pollution, 188, 166-171. |
12 | Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions.Science, 320, 889-892. |
13 | Gundale MJ, Deluca TH, Nordin A (2011). Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests.Global Change Biology, 17, 2743-2753. |
14 | Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A (1998). Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data.Forest Ecology and Management, 101, 37-55. |
15 | Högberg P, Fan HB, Quist M, Binkley D, Tamm CO (2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489-499. |
16 | Houle D, Moore JD (2008). Soil solution, foliar concentrations and tree growth response to 3-year of ammonium-nitrate addition in two boreal forests of Québec, Canada.Forest Ecology and Management, 255, 2049-2060. |
17 | Hyvönen R, Persson T, Andersson S, Olsson B, Ågren G, Linder S (2008). Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry, 89, 121-137. |
18 | Janssens IA, Luyssaert S (2009). Carbon cycle: Nitrogen’s carbon bonus.Nature Geoscience, 2, 318-319. |
19 | Jung K, Chang SX (2012). Four years of simulated N and S depositions did not cause N saturation in a mixedwood boreal forest ecosystem in the oil sands region in northern Alberta, Canada.Forest Ecology and Management, 280, 62-70. |
20 | Kajimoto T, Matsuura Y, Osawa A, Prokushkin AS, Sofronov MA, Abaimov AP (2003). Root system development of Larix gmelinii trees affected by micro-scale conditions of permafrost soils in central Siberia. Plant and Soil, 255, 281-292. |
21 | Kajimoto T, Matsuura Y, Sofronov MA, Volokitina AV, Mori S, Osawa A, Abaimov AP (1999). Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia.Tree Physiology, 19, 815-822. |
22 | Lamarque JF, Kiehl JT, Brasseur GP, Butler T, Cameron-Smith P, Collins WD, Collins WJ, Granier C, Hauglustaine D, Hess PG, Holland EA, Horowitz L, Lawrence MG, McKenna D, Merilees P, Prather MJ, Rasch PJ, Rotman D, Shindell D, Thornton P (2005). Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition.Journal of Geophysical Research: Atmospheres, 110, D19303. |
23 | Li N (2014). Physiological and Ecological Response of Larix gmelinii Seedlings Under Soil Drought Stress and Different Nitrogen Levels. Master degree dissertation, Northeast Forestry University, Harbin.(in Chinese with English abstract) |
[李娜 (2014). 落叶松幼苗对干旱胁迫及氮添加的生理生态响应. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
24 | Litton CM, Raich JW, Ryan MG (2007). Carbon allocation in forest ecosystems. Global Change Biology, 13, 2089-2109. |
25 | Liu X, Liu BH (2014). Response of Larix gmelinii (Rupr.) Kuzen radial growth to climate for different slope direction in Daxing’an Mountain.Journal of Northeast Forestry University, 42(12), 13-17, 21.(in Chinese with English abstract) |
[刘欣, 刘滨辉 (2014). 大兴安岭不同坡向兴安落叶松径向生长对气候变化的响应. 东北林业大学学报, 42(12), 13-17, 21.] | |
26 | Magill AH, Aber JD, Berntson GM, McDowell WH, Nadelhoffer KJ, Melillo JM, Steudler P (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems, 3, 238-253. |
27 | Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 849-851. |
28 | Murty D, McMurtrie RE, Ryan MG (1996). Declining forest productivity in aging forest stands: A modeling analysis of alternative hypotheses. Tree Physiology, 16, 187-200. |
29 | Newton PF, Amponsah IG (2006). Systematic review of short-term growth responses of semi-mature black spruce and jack pine stands to nitrogen-based fertilization treatments.Forest Ecology and Management, 237, 1-14. |
30 | Ni J (2002). Effects of climate change on carbon storage in boreal forests of China: A local perspective.Climatic Change, 55, 61-75. |
31 | O’Brien ST, Hubbell SP, Spiro P, Condit R, Foster RB (1995). Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology, 76, 1926-1939. |
32 | Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests.Science, 333, 988-993. |
33 | Rappe-George MO, Gärdenäs AI, Kleja DB (2013). The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil.Biogeosciences, 10, 1365-1377. |
34 | Sheng WP, Yu GR, Jiang CM, Yan JH, Liu YF, Wang SL, Wang B, Zhang JH, Wang CK, Zhou M, Jia BR (2013). Monitoring nitrogen deposition in typical forest ecosystems along a large transect in China. Environmental Monitoring and Assessment, 185, 833-844. |
35 | Sutton MA, Simpson D, Levy PE, Smith RI, Reis S, van Oijen M, de Vries WIM (2008). Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration.Global Change Biology, 14, 2057-2063. |
36 | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur?Biogeochemistry, 13, 87-115. |
37 | Xu HC (1998). Daxing’an Mountains Forests in China. Science Press, Beijing.(in Chinese) |
[徐化成 (1998). 中国大兴安岭森林. 科学出版社, 北京.] | |
38 | Zhang XL, Cui MX, Ma YJ, Wu T, Chen ZJ, Ding WH (2010). Larix gmelinii tree-ring width chronology and its responses to climate change in Kuduer, Great Xing’an Mountains.Journal of Applied Ecology, 21, 2501-2507.(in Chinese with English abstract) |
[张先亮, 崔明星, 马艳军, 吴涛, 陈振举, 丁玮航 (2010). 大兴安岭库都尔地区兴安落叶松年轮宽度年表及其与气候变化的关系. 应用生态学报, 21, 2501-2507.] | |
39 | Zhao Q, Liu XY, Hu YL, Zeng DH (2010). Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii.Scientia Silvae Sinicae, 46(5), 14-19.(in Chinese with English abstract) |
[赵琼, 刘兴宇, 胡亚林, 曾德慧 (2010). 氮添加对兴安落叶松养分分配和再吸收效率的影响. 林业科学, 46(5), 14-19.] | |
40 | Zhou LX, Liu GP, Wang JB (2004). The effect of fertilization on the growth of Larix gmelinii. Journal of Northeast Forestry University, 32(2), 16-18.(in Chinese with English abstract) |
[周利勋, 刘广平, 王金波 (2004). 落叶松人工林的施肥效应. 东北林业大学学报, 32(2), 16-18.] |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 王雨婷, 刘旭婧, 唐驰飞, 陈玮钰, 王美娟, 向松竹, 刘梅, 杨林森, 傅强, 晏召贵, 孟红杰. 神农架极小种群植物庙台槭群落特征及种群动态[J]. 植物生态学报, 2024, 48(1): 80-91. |
[7] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[8] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[9] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[10] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[11] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[12] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[13] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[14] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[15] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19