植物生态学报 ›› 2015, Vol. 39 ›› Issue (7): 746-752.DOI: 10.17521/cjpe.2015.0071
王彪1,2, 江源1,2,3,*(), 王明昌1,2, 董满宇1,2, 章异平1,2
出版日期:
2015-07-01
发布日期:
2015-07-22
通讯作者:
江源
作者简介:
*作者简介:E-mail:
基金资助:
WANG Biao1,2, JIANG Yuan1,2,3(), WANG Ming-Chang1,2, DONG Man-Yu1,2, ZHANG Yi-Ping1,2
Online:
2015-07-01
Published:
2015-07-22
About author:
# Co-first authors
摘要:
高山林线对环境变化具有高度的敏感性, 但林线形成机制仍然没有明确的结论。为了检验高山林线形成是由碳限制还是生长限制决定, 并探讨林线树种适应高山环境的生理生态机制, 选择山西省吕梁山脉北端芦芽山, 沿3个海拔梯度测定了林线树种白杄(Picea meyeri)各组织非结构性碳水化合物(NSC)及其组分含量。结果表明: 白杄总体及各组织NSC含量均随海拔升高而增加, 林线树木不存在碳限制; 白杄NSC源、汇均随海拔升高而增加, 源-汇比在3个海拔之间没有差异, 表明源-汇平衡关系对海拔的适应性, 林线树木碳源活动没有受到限制; 各组织中可溶性糖与淀粉的比值随海拔升高呈增大趋势, 说明树木生长的环境越寒冷, 树木组织中表现出越明显的保护策略, 也可能暗示林线区域的树木更多地受到生长限制。研究结果在一定程度上支持“生长限制”假说。
王彪, 江源, 王明昌, 董满宇, 章异平. 芦芽山不同海拔白杄非结构性碳水化合物含量动态. 植物生态学报, 2015, 39(7): 746-752. DOI: 10.17521/cjpe.2015.0071
WANG Biao,JIANG Yuan,WANG Ming-Chang,DONG Man-Yu,ZHANG Yi-Ping. Variations of non-structural carbohydrate concentration of Picea meyeri at different elevations of Luya Mountain, China. Chinese Journal of Plant Ecology, 2015, 39(7): 746-752. DOI: 10.17521/cjpe.2015.0071
海拔 Elevation (m) | NSC总体含量 Overall NSC (%) | NSC源 NSC in source (%) | NSC汇 NSC in sink (%) | 源-汇比 SSR-NSC |
---|---|---|---|---|
2 040 | 12.09b | 19.49b | 9.62b | 2.0a |
2 400 | 12.62b | 19.48b | 10.33a | 1.9a |
2 740 | 14.56a | 23.12a | 11.71a | 2.0a |
表1 不同海拔白杄总体非结构性碳水化合物(NSC)含量、NSC源和汇含量及其比值
Table 1 Non-structural carbohydrate (NSC) across tissues, NSC in source (needles) and sink (carbon storage organs-fine roots and stem sapwood), and source-sink ratio of NSC (SSR-NSC = source NSC/sink NSC) in Picea meyeri growing at different elevations
海拔 Elevation (m) | NSC总体含量 Overall NSC (%) | NSC源 NSC in source (%) | NSC汇 NSC in sink (%) | 源-汇比 SSR-NSC |
---|---|---|---|---|
2 040 | 12.09b | 19.49b | 9.62b | 2.0a |
2 400 | 12.62b | 19.48b | 10.33a | 1.9a |
2 740 | 14.56a | 23.12a | 11.71a | 2.0a |
海拔 Elevation (m) | 可溶性糖 Soluble sugar (%) | 淀粉 Starch (%) | 可溶性糖/淀粉 Sugar/ Starch ratio |
---|---|---|---|
2 040 | 8.57b | 3.53b | 2.4a |
2 400 | 8.59b | 4.03a | 2.1a |
2 740 | 10.32a | 4.24a | 2.4a |
表2 不同海拔白杄总体可溶性糖、淀粉含量及其比值
Table 2 Concentrations of soluble sugar, starch and ratios of total soluble sugars to starch in Picea meyeri growing at different elevations
海拔 Elevation (m) | 可溶性糖 Soluble sugar (%) | 淀粉 Starch (%) | 可溶性糖/淀粉 Sugar/ Starch ratio |
---|---|---|---|
2 040 | 8.57b | 3.53b | 2.4a |
2 400 | 8.59b | 4.03a | 2.1a |
2 740 | 10.32a | 4.24a | 2.4a |
图1 不同海拔白杄各组织非结构性碳水化合物(NSC)含量(可溶性糖含量与淀粉含量之和)(平均值±标准偏差, n = 5)。不同大写字母(表示NSC)和小写字母(上部字母代表淀粉, 下部字母代表可溶性糖)表示同一组织不同海拔间NSC差异显著(p < 0.05, Duncan test)。
Fig. 1 Non-structural carbohydrate (NSC) concentrations in tissues of Picea meyeri growing at different elevations (mean ± SD, n = 5). Capital (for NSC ) and small letters (uppercase letters for sugars, and lowercase letters for starch) indicate significant differences (p < 0.05, Duncan test) among different altitudes.
海拔 Elevation (m) | 叶 Leaf | 细根 Fine root | 粗根 Coarse root | 茎干 Stem |
---|---|---|---|---|
2 040 | 12.56b | 1.33a | 0.85a | 1.27b |
2 400 | 11.12b | 1.40a | 0.78a | 0.64c |
2 740 | 16.50a | 1.27a | 0.87a | 1.64a |
表3 不同海拔白杄各组织可溶性糖含量与淀粉含量比值
Table 3 The ratio of soluble sugar concentration and starch concentration in tissues of Picea meyeri at different elevations
海拔 Elevation (m) | 叶 Leaf | 细根 Fine root | 粗根 Coarse root | 茎干 Stem |
---|---|---|---|---|
2 040 | 12.56b | 1.33a | 0.85a | 1.27b |
2 400 | 11.12b | 1.40a | 0.78a | 0.64c |
2 740 | 16.50a | 1.27a | 0.87a | 1.64a |
[1] | Bacelar EA, Santos DL, Moutinho-Pereira JM, Gonçalves BC, Ferrira HF, Correia CM (2006). Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage.Plant Science, 170, 596-605. |
[2] | Fajardo A, Piper FI, Pfund L, Körner C, Hoch G (2012). Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control.New Phytologist, 195, 794-802. |
[3] | Goldstein G, Meinzer FC, Rada F (1994). Environmental biology of a tropical treeline species, Polylepis sericea. In: Rundel PW, Smith AP, Meinzer FC eds. Tropical Alpine Environments: Plant Form and Function. Cambridge University Press, Cambridge. 129-149. |
[4] | Grace J, Berninger F, Nagy L (2002). Impacts of climate change on the tree line.Annals of Botany, 90, 537-544. |
[5] | Hoch G, Körner C (2003). The carbon charging of pines at the climatic treeline: A global comparison.Oecologia, 135, 10-21. |
[6] | Hoch G, Körner C (2005). Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline.Functional Ecology, 19, 941-951. |
[7] | Hoch G, Körner C (2009). Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures.Journal of Ecology, 97, 57-66. |
[8] | Hoch G, Körner C (2012). Global patterns of mobile carbon stores in trees at the high-elevation tree line.Global Ecology and Biogeography, 21, 861-871. |
[9] | Hoch G, Popp M, Körner C (2002). Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline.Oikos, 98, 361-374. |
[10] | Hoch G, Richter A, Körner C (2003). Non-structural carbon compounds in temperate forest trees.Plant, Cell & Environment, 26, 1067-1081. |
[11] | Jiang Y, Yang YG, Dong MY, Zhang WT, Ren FP (2009). Stem radius growth of Picea meyeri and Larix principis- rupprechtii nearby the tree-line of Luya Mountain.Chinese Journal of Applied Ecology, 20, 1271-1277. |
(in Chinese with English abstract) [江源, 杨艳刚, 董满宇, 张文涛, 任斐鹏 (2009). 芦芽山林线白杄与华北落叶松径向生长特征比较. 应用生态学报, 20, 1271-1277.] | |
[12] | Körner C (1998). A re-assessment of high elevation treeline positions and their explanation.Oecologia, 115, 445-459. |
[13] | Körner C (2003a). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd edn. Springer, Berlin. |
[14] | Körner C (2003b). Carbon limitation in trees.Journal of Ecology, 91, 4-17. |
[15] | Körner C, Diemer M (1994). Evidence that plants from high altitudes retain their greater photosynthetic efficiency under elevated CO2.Functional Ecology, 8, 58-68. |
[16] | Körner C, Paulsen J (2004). A world-wide study of high altitude treeline temperatures.Journal of Biogeography, 31, 713-732. |
[17] | Li MH, Hoch G, Körner C (2001). Spatial variability of mobile carbohydrates within Pinus cembra trees at the alpine treeline.Phyton, 41, 203-213. |
[18] | Li MH, Hoch G, Körner C (2002). Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline.Trees, 16, 331-337. |
[19] | Li MH, Kräuchi N (2005). The state of knowledge on alpine tree line and suggestions for future research.Journal of Sichuan Forestry Science and Technology, 26(4), 36-42. |
(in Chinese with English abstract) [李迈和, Kräuchi N (2005). 全球高山林线研究现状与发展方向. 四川林业科技, 26(4), 36-42.] | |
[20] | Li MH, Xiao WF, Wang SG, Cheng GW, Cherubini P, Cai XH, Liu XL, Wang XD, Zhu WZ (2008a). Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation.Tree Physiology, 28, 1287-1296. |
[21] | Li MH, Xiao WF, Shi PL, Wang SG, Zhong YD, Liu XL, Wang XD, Cai XH, Shi ZM (2008b). Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations.Plant, Cell & Environment, 31, 1377-1387. |
[22] | Liu YH, An LZ, Guo FX, Xu SJ (2007). Studies on the relationship between the changes of fat, soluble sugar and flavoniods and the adaptation to environments of alpine subnival plants at the source of Ürümqi River.Journal of Glaciology and Geocryology, 29, 947-952. |
(in Chinese with English abstract) [刘艳红, 安黎哲, 郭凤霞, 徐世健 (2007). 高山冰缘植物粗脂肪, 可溶性糖和类黄酮的含量变异与环境适应关系的研究. 冰川冻土, 29, 947-952.] | |
[23] | Molina-Montenegro MA, Gallardo-Cerda J, Flores TSM, Atala C (2012). The trade-off between cold resistance and growth determines the Nothofagus pumilio treeline.Plant Ecology, 213, 133-142. |
[24] | Morin X, Améglio T, Ahas R, Kurz-Besson C, Lanta V, Lebourqeois F, Miqietta F, Chuine I (2007). Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species.Tree Physiology, 27, 817-825. |
[25] | Pan QM, Han XG, Bai YF, Yang JC (2002). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants.Chinese Bulletin of Botany, 19, 30-38. |
(in Chinese with English abstract) [潘庆民, 韩兴国, 白永飞, 杨景成 (2002). 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 19, 30-38.] | |
[26] | Piper FI, Cavieres LA, Reyes-Díaz M, Corcuera LJ (2006). Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D. Don (Rosaceae) at the treeline in central Chile.Plant Ecology, 185, 29-39. |
[27] | Runion GB, Entry JA, Prior SA, Mitchell RJ, Rogers HH (1999). Tissue chemistry and carbon allocation in seedlings of Pinus palustris subjected to elevated atmospheric CO2 and water stress.Tree Physiology, 19, 329-335. |
[28] | Shi Z, Bai DZ, Lei JP, Li MH, Xiao WF (2011). Advance on physioecological adaptation of alpine Plants to Mountainous Environment.Acta Botanica Boreali-Occidentalia Sinica, 31, 1711-1718. |
(in Chinese with English abstract) [施征, 白登忠, 雷静品, 李迈和, 肖文发 (2011). 高山植物对其环境的生理生态适应性研究进展. 西北植物学报, 31, 1711-1718.] | |
[29] | Shi Z, Bai DZ, Lei JP, Xiao WF (2012). Variations of chloroplast pigments and non-structural carbohydrates of Sabina przewalskii along altitude in Qilian Mountains timberline.Acta Botanica Boreali-Occidentalia Sinica, 32, 2286-2292. |
(in Chinese with English abstract) [施征, 白登忠, 雷静品, 肖文发 ( 2012). 祁连圆柏光合色素与非结构性碳水化合物含量对海拔变化的响应. 西北植物学报, 32, 2286-2292.] | |
[30] | Shi PL, Körner C, Hoch G (2006). End of season carbon supply status of woody species near the treeline in western China.Basic and Applied Ecology, 7, 370-377. |
[31] | Shi PL, Körner C, Hoch G (2008). A test of the growth- limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas.Functional Ecology, 22, 213-220. |
[32] | Smith AM, Stitt M (2007). Coordination of carbon supply and plant growth.Plant, Cell & Environment, 30, 1126-1149. |
[33] | Stevens GC, Fox JF (1991). The causes of treeline.Annual Review of Ecology and Systematics, 22, 177-191. |
[34] | Strand A, Foyer CH, Gustafsson P, Gardestrom P, Hurry V (2003). Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant, Cell & Environment, 26, 523-535. |
[35] | Yu DP, Wang QW, Liu JQ, Zhou WM, Qi L, Wang XY, Zhou L, Dai LM (2014). Formation mechanisms of the alpine Erman’s birch (Betula ermanii) treeline on Changbai Mountain in Northeast China.Trees, 28, 935-947. |
[36] | Zhang JT (1989). Vertical zones of vegetation in Luya Mountain in Shanxi Province.Scientia Geographica Sinica, 9, 346-353. |
(in Chinese with English abstract) [张金屯 (1989). 山西芦芽山植被垂直带的划分. 地理科学, 9, 346-353.] | |
[37] | Zhou YB, Wu DD, Yu DP, Sui CY (2009). Variations of nonstructural carbohydrate content in Betula ermanii at different elevations of Changbai Mountain, China.Chinese Journal of Plant Ecology, 33, 118-124. |
(in Chinese with English abstract) [周永斌, 吴栋栋, 于大炮, 隋琛莹 (2009). 长白山不同海拔岳桦非结构碳水化合物含量的变化. 植物生态学报, 33, 118-124.] | |
[38] | Zheng YP, Wang HX, Lou X, Yang QP, Xu M (2014). Changes of non-structural carbohydrates and its impact factors in trees: A review.Chinese Journal of Applied Ecology, 25, 1188-1196. |
(in Chinese with English abstract) [郑云普, 王贺新, 娄鑫, 杨庆鹏, 徐明 (2014). 木本植物非结构性碳水化合物变化及其影响因子研究进展. 应用生态学报, 25, 1188-1196.] | |
[39] | Zhu WZ, Cao M, Wang SG, Xiao WF, Li MH (2012). Seasonal dynamics of mobile carbon supply in Quercus aquifolioides at the upper elevational limit.PLoS ONE, 7(3), e34213. |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[3] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[4] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[5] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[6] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[7] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[8] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[9] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[10] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[11] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[12] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[13] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[14] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[15] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19