植物生态学报 ›› 2016, Vol. 40 ›› Issue (8): 748-759.DOI: 10.17521/cjpe.2016.00051
所属专题: 凋落物
杨丽丽, 龚吉蕊*(), 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟
出版日期:
2016-08-10
发布日期:
2016-08-23
通讯作者:
龚吉蕊
基金资助:
Li-Li YANG, Ji-Rui GONG*(), Yi-Hui WANG, Min LIU, Qin-Pu LUO, Sha XU, Yan PAN, Zhan-Wei ZHAI
Online:
2016-08-10
Published:
2016-08-23
Contact:
Ji-Rui GONG
摘要:
放牧和围封通过影响植物群落结构和土壤微环境来调控草地生态系统的碳循环。该研究在内蒙古温带草原设置轻度放牧后围封、轻度放牧、重度放牧后围封、重度放牧4种样地, 通过测定干旱年(2011年)和湿润年(2012年)地上、地下凋落物产量、质量及其分解速率和土壤养分含量, 分析不同放牧强度对凋落物形成和分解的影响, 以及围栏封育对生态系统恢复的作用。结果表明: 重度放牧地上凋落物产量和分解速率均高于轻度放牧。干旱年轻度放牧样地地下凋落物产量和分解速率高于重度放牧, 湿润年相反。短期围封显著提高了凋落物产量, 轻度放牧样地围封后地上凋落物分解速率和养分循环加快, 而重度放牧样地围封后地上凋落物分解减慢。因此, 与重度放牧相比, 轻度放牧草地的恢复更适合采用围栏封育措施; 而重度放牧草地的恢复可能还需辅以必要的人工措施。降水显著促进地上、地下凋落物形成和分解。地下凋落物的生产和分解受降水年际波动影响较大, 重度放牧草地对降水变化的敏感度比轻度放牧草地高。地上凋落物分解速率与凋落物N含量显著正相关, 与土壤全N显著负相关, 与地上凋落物C:N和木质素:N相关性不大; 地下凋落物分解速率与凋落物C、C:N和纤维素含量显著负相关。该研究结果将为不同放牧强度的草地生态系统恢复和碳循环研究提供理论依据。
杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟. 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响. 植物生态学报, 2016, 40(8): 748-759. DOI: 10.17521/cjpe.2016.00051
Li-Li YANG, Ji-Rui GONG, Yi-Hui WANG, Min LIU, Qin-Pu LUO, Sha XU, Yan PAN, Zhan-Wei ZHAI. Effects of grazing intensity and grazing exclusion on litter decomposition in the temperate steppe of Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(8): 748-759. DOI: 10.17521/cjpe.2016.00051
样地基本信息 Basic information of the sampling plots | 轻度放牧样地 Light grazing plot | 重度放牧样地 Heavy grazing plot |
---|---|---|
平均高度 Average height (cm) | 13.11 ± 1.46b | 19.85 ± 1.13a |
平均盖度 Average coverage (%) | 57.36 ± 3.92a | 65.29 ± 2.55a |
地上生物量 Above-ground biomass (g·m-2) | 62.26 ± 0.89b | 108.76 ± 5.51a |
粪便数 Number of feces (No.·m-2) | 575.50 ± 2.04b | 1 230.00 ± 12.25a |
表1 样地基本信息(平均值±标准误差, n = 5)
Table 1 Basic information of the sampling plots (mean ± SE, n = 5)
样地基本信息 Basic information of the sampling plots | 轻度放牧样地 Light grazing plot | 重度放牧样地 Heavy grazing plot |
---|---|---|
平均高度 Average height (cm) | 13.11 ± 1.46b | 19.85 ± 1.13a |
平均盖度 Average coverage (%) | 57.36 ± 3.92a | 65.29 ± 2.55a |
地上生物量 Above-ground biomass (g·m-2) | 62.26 ± 0.89b | 108.76 ± 5.51a |
粪便数 Number of feces (No.·m-2) | 575.50 ± 2.04b | 1 230.00 ± 12.25a |
Y | P | Y × P | |
---|---|---|---|
凋落物产量 Litter production | < 0.01 | < 0.01 | < 0.01 |
凋落物分解速率 Litter decomposition | < 0.01 | < 0.01 | < 0.01 |
凋落物C 含量 Litter C content | < 0.01 | < 0.01 | 0.02 |
凋落物N含量 Litter N content | 0.01 | 0.04 | 0.01 |
凋落物纤维素含量 Litter cellulose content | < 0.01 | < 0.01 | 0.01 |
凋落物木质素含量 Litter lignin content | < 0.01 | 0.02 | 0.03 |
凋落物C:N Litter C:N | < 0.01 | < 0.01 | 0.27 |
凋落物木质素:N Litter lignin:N | < 0.01 | < 0.01 | < 0.01 |
土壤全C Soil total C | 0.01 | < 0.01 | < 0.01 |
土壤全N Soil total N | < 0.01 | 0.01 | 0.03 |
表2 样地、年份及其交互作用对地上凋落物产量、质量、分解速率和土壤养分的影响
Table 2 The impact of sampling plots, year and their interactions on above- ground litter production, quality, decomposition and soil total C and N
Y | P | Y × P | |
---|---|---|---|
凋落物产量 Litter production | < 0.01 | < 0.01 | < 0.01 |
凋落物分解速率 Litter decomposition | < 0.01 | < 0.01 | < 0.01 |
凋落物C 含量 Litter C content | < 0.01 | < 0.01 | 0.02 |
凋落物N含量 Litter N content | 0.01 | 0.04 | 0.01 |
凋落物纤维素含量 Litter cellulose content | < 0.01 | < 0.01 | 0.01 |
凋落物木质素含量 Litter lignin content | < 0.01 | 0.02 | 0.03 |
凋落物C:N Litter C:N | < 0.01 | < 0.01 | 0.27 |
凋落物木质素:N Litter lignin:N | < 0.01 | < 0.01 | < 0.01 |
土壤全C Soil total C | 0.01 | < 0.01 | < 0.01 |
土壤全N Soil total N | < 0.01 | 0.01 | 0.03 |
Y | P | Y × P | |
---|---|---|---|
凋落物产量 Litter production | < 0.01 | < 0.01 | < 0.01 |
凋落物分解速率 Litter decomposition | < 0.01 | < 0.01 | < 0.01 |
凋落物C含量 Litter C content | < 0.01 | < 0.01 | 0.09 |
凋落物N含量 Litter N content | 0.07 | < 0.01 | < 0.01 |
凋落物纤维素含量 Litter cellulose content | < 0.01 | < 0.01 | 0.04 |
凋落物木质素含量 Litter lignin content | 0.45 | < 0.01 | < 0.01 |
凋落物C:N Litter C:N | < 0.01 | 0.05 | < 0.01 |
凋落物木质素:N Litter lignin:N | 0.40 | 0.07 | < 0.01 |
表3 样地、年份及其交互作用对地下凋落物产量、质量、分解速率 的影响
Table 3 The impact of sampling plots, year and their interactions on below-ground litter production, quality and decomposition rates
Y | P | Y × P | |
---|---|---|---|
凋落物产量 Litter production | < 0.01 | < 0.01 | < 0.01 |
凋落物分解速率 Litter decomposition | < 0.01 | < 0.01 | < 0.01 |
凋落物C含量 Litter C content | < 0.01 | < 0.01 | 0.09 |
凋落物N含量 Litter N content | 0.07 | < 0.01 | < 0.01 |
凋落物纤维素含量 Litter cellulose content | < 0.01 | < 0.01 | 0.04 |
凋落物木质素含量 Litter lignin content | 0.45 | < 0.01 | < 0.01 |
凋落物C:N Litter C:N | < 0.01 | 0.05 | < 0.01 |
凋落物木质素:N Litter lignin:N | 0.40 | 0.07 | < 0.01 |
图1 2011和2012年4个样地地上凋落物(A)和地下凋落物(B)产量(平均值±标准误差)。不同大写字母表示2011年凋落物产量在不同样地之间差异显著, 不同小写字母表示2012年凋落物产量在不同样地之间差异显著(p < 0.05)。HG, 重度放牧样地; HGE, 重度放牧后围封样地; LG, 轻度放牧样地; LGE, 轻度放牧后围封样地。
Fig. 1 Above-ground (A) and below-ground (B) litter production in the four treatment plots in 2011 and 2012 (mean ± SE). Capital letters indicate significant difference in litter production between different plots in 2011 at 0.05 levels, and lowercase letters indicate significant difference in litter production between different plots in 2012 at 0.05 levels. HG, heavy-grazing; HGE, heavy-grazing exclusion; LG, light-grazing; LGE, light-grazing exclusion .
图2 2011和2012年4个样地地上凋落物C含量(A)、N含量(B)、C:N (C)、纤维素含量(D)、木质素含量(E)和木质素:N (F)(平均值±标准误差), 不同大写字母表示2011年地上凋落物质量在不同样地之间差异显著, 不同小写字母表示2012年地上凋落物质量在不同样地之间差异显著(p < 0.05)。HG, 重度放牧样地; HGE, 重度放牧后围封样地; LG, 轻度放牧样地; LGE, 轻度放牧后围封样地。
Fig. 2 Above-ground litter C content (A), N content (B), C:N (C), cellulose content (D), lignin content (E) and lignin:N (F) in four plots in 2011 and 2012 (mean ± SE). Capital letters indicate significant difference in litter quality between different plots in 2011 at 0.05 levels, and lowercase letters indicate significant difference in litter quality between different plots in 2012 at 0.05 levels. HG, heavy-grazing; HGE, heavy-grazing exclusion; LG, light-grazing; LGE, light-grazing exclusion.
图3 2011和2012年4个样地地下凋落物C含量(A)、N含量(B)、C:N (C)、纤维素含量(D)、木质素含量(E)和木质素:N (F) (平均值±标准误差)。 不同大写字母表示2011年地下凋落物质量在不同样地之间差异显著, 不同小写字母表示2012年地下凋落物质量在不同样地之间差异显著(p < 0.05)。HG, 重度放牧样地; HGE, 重度放牧后围封样地; LG, 轻度放牧样地; LGE, 轻度放牧后围封样地。
Fig. 3 Below-ground litter C content (A), N content (B), C:N (C), cellulose content (D), lignin content (E) and lignin:N (F) in four plots in 2011 and 2012 (mean ± SE). Different capital letters indicate significant difference in litter quality between different plots in 2011 at 0.05 levels, and different lowercase letters indicate significant difference in litter quality between different plots in 2012 at 0.05 levels. HG, heavy-grazing; HGE, heavy-grazing exclusion; LG, light-grazing; LGE, light-grazing exclusion.
图4 2011和2012年4个样地地上凋落物(A)和地下凋落物(B)分解速率k (平均值±标准误差)。不同大写字母表示2011年凋落物分解速率在不同样地之间差异显著; 不同小写字母表示2012年凋落物分解速率在不同样地之间差异显著(p < 0.05)。HG, 重度放牧样地; HGE, 重度放牧后围封样地; LG, 轻度放牧样地; LGE, 轻度放牧后围封样地。
Fig. 4 Aboveground (A) and belowground (B) litter decomposition rates (k) in four plots in 2011 and 2012 (mean ± SE). Different capital letters indicate significant difference in litter decomposition rate between different plots in 2011 at 0.05 levels, and different lowercase letters indicate significant difference in litter decomposition rate between different plots in 2012 at 0.05 levels. HG, heavy-grazing; HGE, heavy-grazing exclusion; LG, light-grazing; LGE, light-grazing exclusion.
图5 2011和2012年4个样地土壤全C (A)和全N (B)含量(平均值±标准误差)。不同大写字母表示2011年土壤C、N在不同样地之间差异显著, 不同小写字母表示2012年土壤C、N在不同样地之间差异显著(p < 0.05)。HG, 重度放牧样地; HGE, 重度放牧后围封样地; LG, 轻度放牧样地; LGE, 轻度放牧后围封样地。
Fig. 5 Soil total C (A) and total N content (B) in four plots in 2011 and 2012 (mean ± SE). Different capital letters indicate significant difference in soil nutrient content between different plots in 2011 at 0.05 levels, and different lowercase letters indicate significant difference in soil nutrient content between different plots in 2012 at 0.05 levels. HG, heavy-grazing; HGE, heavy-grazing exclusion; LG, light-grazing; LGE, light-grazing exclusion.
[1] | Aldezabal A, Moragues L, Odriozola I, Mijangos I (2015). Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland. Applied Soil Ecology, 96, 251-260. |
[2] | An H, Li GQ (2014). Differential effects of grazing on plant functional traits in the desert grassland. Polish Journal of Ecology, 62, 239-251. |
[3] | AOAC International (2000). AOAC official method 973.18 fiber (acid detergent) and lignin (H2SO4) in animal feed. In: Horwitz W ed. Official Methods of Analysis of AOAC International, 17th edn. Association of Official Analytical Chemists, Gaithersburg, USA. |
[4] | Austin AT, Vitousek PM (2001). Precipitation, decomposition, and litter decomposability of Metrosideros polymorpha on Hawaii. Journal of Ecology, 88, 129-138. |
[5] | Bai WM, Fang Y, Zhou M, Xie T, Li LH, Zhang WH (2015). Heavily intensified grazing reduces root production in an Inner Mongolia temperate steppe. Agriculture Ecosystems & Environment, 200, 143-150. |
[6] | Bardgett RD, Manning P, Elly M, Franciska V (2013). Hierarchical responses of plant-soil interactions to climate change: Consequences for the global carbon cycle. Journal of Ecology, 101, 334-343. |
[7] | Bontti EE, Decant JP, Munson SM, Gathany MA, Przeszlowska A, Haddix ML, Owens S, Burke IC, Parton WJ, Harmon ME (2009). Litter decomposition in grasslands of Central North America (US Great Plains). Global Change Biology, 15, 1356-1363. |
[8] | Bremner JM (1960). Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, 55, 11-33. |
[9] | Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer JR, Field CB, Gower ST, Hollinger DY, Hunt JE (2000). Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding. Ecosystems, 3, 115-130. |
[10] | Cingolani AM, Posse G, Collantes MB (2005). Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. Journal of Applied Ecology, 42(42), 50-59. |
[11] | Dormaar JF, Willms WD (1990). Effect of grazing and cultiva- tion on some chemical properties of soils in the mixed prairie. Journal of Range Management, 43, 456-460. |
[12] | Eldridge DJ, Westoby M, Holbrook KM (1992). Soil surface characteristics, microtopography and proximity to mature shrubs: Effects on survival of several cohorts of Atriplex vesicaria seedlings. Journal of Ecology, 78, 357-364. |
[13] | Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JH (2013). Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology, 101, 943-952. |
[14] | Giese M, Gao YZ, Zhao Y, Pan QM, Lin S, Peth S, Brueck H (2009). Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland. Applied Soil Ecology, 41, 8-18. |
[15] | Gao YH, Chen H, Luo P, Wu N, Wang GX (2007). Effects of grazing intensity on decompositions of two dominant plant species litters in alpine meadow on the Northwester Sichuan. Ecological Science, 26(3), 193-198. (in Chinese with English abstract)[高永恒, 陈槐, 罗鹏, 吴宁, 王根绪 (2007). 放牧强度对川西北高山草甸两个优势物种凋落物分解的影响. 生态科学, 26(3), 193-198.] |
[16] | Gong XY, Fanselow N, Dittert K, Taube F, Lin S (2015). Re- sponse of primary production and biomass allocation to nitrogen and water supplementation along a grazing intensity gradient in semiarid grassland. European Journal of Agronomy, 63, 27-35. |
[17] | Greenwood KL, Hutchinson KJ (2003). Root characteristics of temperate pasture in New South Wales after grazing at three stocking rates for 30 years. Grass & Forage Science, 53, 120-128. |
[18] | Hewins DB, Archer SR, Okin GS, Mcculley RL, Throop HL (2013). Soil-Litter mixing accelerates decomposition in a Chihuahuan Desert Grassland. Ecosystems, 16, 183-195. |
[19] | Holland CA, Detling JK (1990). Plant response to herbivory and belowground nitrogen cycling. Ecology, 71, 1040-1049. |
[20] | Hou FJ, Chang SH, Yu YW, Lin HL (2004). A review on trampling by grazed livestock. Acta Ecologica Sinica, 24, 784-789. (in Chinese with English abstract)[侯扶江, 常生华, 于应文, 林慧龙 (2004). 放牧家畜的践踏作用研究评述. 生态学报, 24, 784-789.] |
[21] | Hu ZM, Li S, Guo Q, Niu SL, He NP, Li LH, Yu GR (2016). A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biology, 22, 1385-1393. |
[22] | Koukoura Z, Mamolos AP, Kalburtji KL (2003). Decomposition of dominant plant species litter in a semi-arid grassland. Applied Soil Ecology, 23, 13-23. |
[23] | Lindsay EA, Cunningham SA (2009). Livestock grazing exclusion and microhabitat variation affect invertebrates and litter decomposition rates in woodland remnants. Forest Ecology & Management, 258, 178-187. |
[24] | Liu L, King JS, Booker FL, Giardina CP, Allen HL, Hu SJ (2009). Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: A microcosm study. Global Change Biology, 15, 441-453. |
[25] | Lu X, Yan Y, Sun J, Zhang XK, Chen YC, Wang XD, Cheng GW (2015). Carbon, nitrogen, and phosphorus storage in alpine grassland ecosystems of Tibet: Effects of grazing exclusion. Ecology & Evolution, 5, 4492-4504. |
[26] | Mekuria W, Veldkamp E, Haile M, Nyssen J, Muys B, Gebrehiwot K (2007). Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. Journal of Arid Environments, 69, 270-284. |
[27] | Mikan CJ, Schimel JP, Doyle AP (2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology & Biochemistry, 34, 1785-1795. |
[28] | Montané F, Romanyà J, Rovira P, Casals P (2010). Aboveground litter quality changes may drive soil organic carbon increase after shrub encroachment into mountain grasslands. Plant & Soil, 337, 151-165. |
[29] | Nelson DW, Sommers LE (1982). Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR eds. Methods of Soil Analysis. American Society of Agronomy, Madison, USA. 539-579. |
[30] | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331. |
[31] | Pucheta E, Bonamici I, Cabido M, Díaz S (2004). Below- ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina. Austral Ecology, 29, 201-208. |
[32] | Qi YC, Dong YS, Geng YB, Yang XH, Geng HL (2003). The progress in the carbon cycle researches in grassland ecosystem in China. Progress in Geography, 22, 342-352. (in Chinese with English abstract)[齐玉春, 董云社, 耿元波,杨小红, 耿会立 (2003). 我国草地生态系统碳循环研究进展. 地理科学进展, 22, 342-352.] |
[33] | Raich JW, Tufekciogul A (2000). Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48, 71-90. |
[34] | Sanaullah M, Chabbi A, Girardin C, Durand JL, Poirier M, Rumpel C (2014). Effects of drought and elevated temperature on biochemical composition of forage plants and their impact on carbon storage in grassland soil. Plant & Soil, 374, 767-778. |
[35] | Semmartin M, Ghersa CM (2006). Intraspecific changes in plant morphology, associated with grazing, and effects on litter quality, carbon and nutrient dynamics during decomposition. Austral Ecology, 31(1), 99-105. |
[36] | Shariff AR, Grygiel CE (1994). Grazing intensity effects on litter decomposition and soil nitrogen mineralization. Journal of Range Management, 47, 444-449. |
[37] | Shi FS, Chen H, Wu Y, Wu N (2010). Effects of livestock exclusion on vegetation and soil properties under two topographic habitats in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Polish Journal of Ecology, 58, 125-133. |
[38] | Smith SW, Woodin SJ, Pakeman RJ, David J, René VDW (2014). Root traits predict decomposition across a landscape-scale grazing experiment. New Phytologist, 203, 851-862. |
[39] | Solly EF, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B, Müller J, Zscheischler J, Trumbore SE, Schrumpf M (2014). Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant & Soil, 382, 203-218. |
[40] | Stark S, Männistö MK, Ganzert L, Tiirola M, Häggblom MM (2015). Grazing intensity in subarctic tundra affects the temperature adaptation of soil microbial communities. Soil Biology & Biochemistry, 84, 147-157. |
[41] | Tateno R, Tokuchi N, Yamanaka N, Du S, Otsuki K, Shimamura T, Xue Z, Wang SQ, Hou QC (2007). Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. Forest Ecology & Management, 241(s1-3), 84-90. |
[42] | Tessier M, Vivier JP, Ouin A, Gloaguen JC, Lefeuvre JC (2003). Vegetation dynamics and plant species interactions under grazed and ungrazed conditions in a western European salt marsh. Acta Oecologica, 24, 103-111. |
[43] | van Soest PJ (1963). Use of detergents in analysis of fibrous feeds: A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists, 46, 829-835. |
[44] | van Soest PJ (1967). Development of a comprehensive system of feed analyses and its application to forages. Journal of Animal Science, 26, 119-128. |
[45] | Wang L, Zhang Y, Xu DM, Zhang N (2013). Study on litter decomposition rates and N, P, K content of litter in different years of enclosure in desert steppe. Pratacultural Science, 30, 1508-1512. (in Chinese with English abstract)[王蕾, 张宇, 许冬梅, 张娜 (2013). 围封对草地凋落物分解速率和N、P、K含量的影响. 草业科学, 30, 1508-1512.] |
[46] | Wang MJ, Han GD, Zhao ML, Chen HJ, Wang Z, Hao XL, Bo T (2007). The effects of different grazing intensity on soil organic carbon content in meadow steppe. Pratacultural Science, 10, 6-10. (in Chinese with English abstract)[王明君, 韩国栋, 赵萌莉, 陈海军, 王珍, 郝晓莉, 薄涛 (2007). 草甸草原不同放牧强度对土壤有机碳含量的影响. 草业科学, 10, 6-10.] |
[47] | Wang YH, Gong JR, Liu M, Luo QP, Xu S, Pan Y, Zhai ZW (2015). Effects of land use and precipitation on above- and below-ground litter decomposition in a semi-arid temperate steppe in Inner Mongolia, China. Applied Soil Ecology, 96, 183-191. |
[48] | Wardle DA, Bardgett RD, Klironomos JN, Heikki S, Wim H, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633. |
[49] | Wen HY, Zhao HL, Fu H (2005). Effects of years for reclamation and enclosure years on soil properties of degraded sandy grassland. Scientia Agricultura Sinica, 14(1), 31-37. (in Chinese with English abstract)[文海燕, 赵哈林, 傅华 (2005). 开垦和封育年限对退化沙质草地土壤性状的影响. 草业学报, 14(1), 31-37.] |
[50] | Xu DD, Guo XL (2015). Evaluating the impacts of nearly 30 years of conservation on grassland ecosystem using Landsat TM images. Grassland Science, 61, 227-242. |
[51] | Yang JC, Han XG, Huang JH, Pan QM (2003). Effects of land use change on carbon storage in terrestrial ecosystem. Chinese Journal of Applied Ecology, 14, 1385-1390. (in Chinese with English abstract)[杨景成, 韩兴国, 黄建辉, 潘庆民 (2003). 土地利用变化对陆地生态系统碳贮量的影响. 应用生态学报, 14, 1385-1390.] |
[52] | Yeo JJ (2005). Effects of grazing exclusion on rangeland vegetation and soils, East Central Idaho. Western North American Naturalist, 65, 91-102. |
[53] | Zhang CX, Nan ZB (2010). Research progress OR effects of grazing on physical and chemical characteristics of grassland soil. Scientia Agricultura Sinica, 19(4), 204-211. (in Chinese with English abstract)[张成霞, 南志标 (2010). 放牧对草地土壤理化特性影响的研究进展. 草业学报, 19(4), 204-211.] |
[54] | Zhang D, Hui D, Luo Y, Zhou G (2008). Rates of litter decom- position in terrestrial ecosystems: Global patterns and controlling factors. Journal of Plant Ecology, 1(2), 85-93. |
[55] | Zhang K, Cheng X, Dang H, Ye C, Zhang YL, Zhang QF (2013). Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment. Soil Biology & Biochemistry, 57, 803-813. |
[56] | Zhang YB, Luo P, Sun G, Mou CX, Wang ZY, Wu N, Luo GR (2012). Effects of grazing on litter decomposition in two alpine meadow on the eastern Qinghai-Tibet Plateau. Acta Ecologica Sinica, 32, 4605-4617. (in Chinese with English abstract)[张艳博, 罗鹏, 孙庚, 牟成香, 王志远, 吴宁, 罗光荣 (2012). 放牧对青藏高原东部两种典型高寒草地类型凋落物分解的影响. 生态学报, 32, 4605-4617.] |
[57] | Zuo WQ, Wang YH, Wang FY, Shi GX (2009). Effects of enclosure on the community characteristics of Leymus chinensis in degenerated steppe. Scientia Agricultura Sinica, 18(3), 12-19. (in Chinese with English abstract)[左万庆, 王玉辉, 王风玉, 师广旭 (2009). 围栏封育措施对退化羊草草原植物群落特征影响研究. 草业学报, 18(3), 12-19.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[4] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[5] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[6] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[7] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[8] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[9] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[10] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[11] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[12] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[13] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[14] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[15] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19