植物生态学报 ›› 2016, Vol. 40 ›› Issue (8): 788-797.DOI: 10.17521/cjpe.2016.0003
出版日期:
2016-08-10
发布日期:
2016-08-23
通讯作者:
赵成章
基金资助:
Ling HAN, Cheng-Zhang ZHAO*(), Ting XU, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG
Online:
2016-08-10
Published:
2016-08-23
Contact:
Cheng-Zhang ZHAO
摘要:
叶大小-叶脉密度的权衡关系是植物叶经济谱理论的基础, 对理解资源竞争条件下植物叶片的物理构建与生理代谢的关系具有重要的意义。该文采用标准化主轴估计(standardized major axis estimation, SMA)的方法, 按芨芨草(Achnatherum splendens)株丛密度设置I (>12丛·m-2)、II (8-12丛·m-2)、III (4-8丛·m-2)和IV (<4丛·m-2) 4个密度梯度, 以叶面积和叶干质量分别表示叶大小, 对张掖洪泛平原湿地不同密度条件下芨芨草种群的叶大小和叶脉密度的关系进行研究。结果表明: 随着芨芨草株丛密度的降低, 湿地群落的土壤含水量逐渐减小、土壤电导率逐渐增加, 芨芨草的净光合速率(Pn)、蒸腾速率(Tr)和分枝数呈先增大后减小的趋势, 叶面积、叶干质量、比叶面积和株高呈逐渐减小趋势、光合有效辐射(PAR)和叶脉密度呈逐渐增加趋势; 芨芨草叶大小和叶脉密度在高密度(I)和低密度(IV)样地均呈极显著负相关关系(p < 0.01), 中密度(II、III)样地二者呈显著负相关关系(p < 0.05); 叶大小和叶脉密度回归方程的SMA斜率在不同密度样地均显著小于-1 (p < 0.05), 即芨芨草叶大小和叶脉密度呈“此消彼长”的权衡关系。在高密度湿地群落芨芨草倾向于大叶片低叶脉密度的叶片构建模式, 在低密度湿地群落选择小叶片高叶脉密度的异速生长模式, 体现了密度制约下湿地植物的生物量分配格局和资源利用对策。
韩玲, 赵成章, 徐婷, 冯威, 段贝贝, 郑慧玲. 张掖湿地芨芨草叶大小和叶脉密度的权衡关系. 植物生态学报, 2016, 40(8): 788-797. DOI: 10.17521/cjpe.2016.0003
Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland. Chinese Journal of Plant Ecology, 2016, 40(8): 788-797. DOI: 10.17521/cjpe.2016.0003
密度 Density | 株高 Plant high (cm) | 分枝数 Twig number | Pn (μmol CO2·m-2·s-1) | Tr (mmol H2O·m-2·s-1) | PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
> 12 bundle·m-2 (I) | 161.00 ± 10.24a | 113.33 ± 5.29d | 13.20 ± 0.12c | 6.45 ± 0.02c | 636.30 ± 14.18d |
8-12 bundle·m-2 (II) | 149.67 ± 8.62b | 203.67 ± 12.34b | 13.83 ± 0.17a | 6.58 ± 0.09a | 839.20 ± 27.95c |
4-8 bundle·m-2 (III) | 140.34 ± 7.50b | 273.33 ± 15.83a | 14.12 ± 0.18a | 6.67 ± 0.10a | 918.80 ± 36.94b |
<4 bundle·m-2 (IV) | 130.67 ± 5.56c | 165.33 ± 11.90c | 13.77 ± 0.13b | 6.53 ± 0.03b | 1 105.10 ± 40.62a |
表1 不同密度条件下芨芨草种群光合生理和生物学特征(平均值±标准误差)
Table 1 Photosynthetic physiological and biological characteristics of Achnatherum splendens under different densities (mean ± SE)
密度 Density | 株高 Plant high (cm) | 分枝数 Twig number | Pn (μmol CO2·m-2·s-1) | Tr (mmol H2O·m-2·s-1) | PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
> 12 bundle·m-2 (I) | 161.00 ± 10.24a | 113.33 ± 5.29d | 13.20 ± 0.12c | 6.45 ± 0.02c | 636.30 ± 14.18d |
8-12 bundle·m-2 (II) | 149.67 ± 8.62b | 203.67 ± 12.34b | 13.83 ± 0.17a | 6.58 ± 0.09a | 839.20 ± 27.95c |
4-8 bundle·m-2 (III) | 140.34 ± 7.50b | 273.33 ± 15.83a | 14.12 ± 0.18a | 6.67 ± 0.10a | 918.80 ± 36.94b |
<4 bundle·m-2 (IV) | 130.67 ± 5.56c | 165.33 ± 11.90c | 13.77 ± 0.13b | 6.53 ± 0.03b | 1 105.10 ± 40.62a |
图1 不同密度条件下芨芨草叶性状和土壤理化性质的变化(平均值±标准误差)。不同小写字母表示相同构件在不同密度处理下差异显著(p < 0.05)。I, 高密度(> 12 bundle·m-2); II, 中密度(8-12 bundle·m-2); III, 中密度(4-8 bundle·m-2); IV, 小密度(<4 bundle·m-2)。
Fig. 1 Change of leaf morphological traits and soil physical and chemical properties of Achnatherum splendens on different densities (mean ± SE). Different lowercase letters indicate significant differences of different density treatments (p < 0.05). I, high density (>12 bundle·m-2); II, medium density (8-12 bundle·m-2); III, medium density (4-8 bundle·m-2); IV, low density (< 4 bundle·m-2).
图2 不同密度条件下芨芨草叶面积与叶脉密度的关系。I, 高密度(>12 bundle·m-2); II, 中密度(8-12 bundle·m-2); III, 中密度(4-8 bundle·m-2); IV, 低密度(< 4 bundle·m-2)。
Fig. 2 Relationship between leaf area and vein density of Achnatherum splendens under different levels of densities. I, high density (>12 bundle·m-2); II, medium density (8-12 bundle·m-2); III, medium density (4-8 bundle·m-2); IV, low density (<4 bundle·m-2).
图3 不同密度条件下芨芨草叶干质量与叶脉密度的关系。I, 高密度(>12 bundle·m-2); II, 中密度(8-12 bundle·m-2); III, 中密度(4-8 bundle·m-2); IV, 低密度(<4 bundle·m-2)。
Fig. 3 Relationship between leaf dry mass and vein density of Achnatherum splendens under different levels of densities. I, high density (>12 bundle·m-2); II, medium density (8-12 bundle·m-2); III, medium density (4-8 bundle·m-2); IV, low density (<4 bundle·m-2).
[1] | Berlyn GP, Miksche JP (1976). Botanical Microtechnique and Cytochemistry. Iowa State University Press, Ames, USA. |
[2] | Brodribb TJ, Feild TS, Sack L (2010). Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 37, 488-498. |
[3] | Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448. |
[4] | Castro-Díez P, Puyravaud JP, Cornelissen JHC (2000). Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia, 124, 476-486. |
[5] | Cheplick GP (2006). A modular approach to biomass allocation in an invasive annual (Microstegium vimineum; Poaceae). American Journal of Botany, 93, 539-545. |
[6] | Cipollini DF, Bergelson J (2001). Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. Journal of Chemical Ecology, 27, 593-610. |
[7] | Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2014). Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland. Chinese Journal of Plant Ecology, 38, 1307-1314. (in English with Chinese abstract)[党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2014). 高寒草地甘肃臭草茎-叶性状的坡度差异性. 植物生态学报, 38, 1307-1314] |
[8] | Falster DS, Warton DI, Wright IJ (. |
[9] | Funk JL, Vitousek PM (2007). Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 1079-1081. |
[10] | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. Chinese Journal of Plant Ecology, 39, 300-308. (in English with Chinese abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] |
[11] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK. |
[12] | Japhet W, Zhou DW, Zhang HX, Zhang HX, Yu T (2009). Evidence of phenotypic plasticity in the response of Fagopyrum esculentum to population density and sowing date. Journal of Plant Biology, 52, 303-311. |
[13] | Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032. (in Chinese with English abstract)[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.] |
[14] | Li L, Zeng H, Guo DL (2013). Leaf venation functional traits and their ecological significance. Chinese Journal of Plant Ecology, 37, 691-698. (in English with Chinese abstract)[李乐, 曾辉, 郭大立 (2013). 叶脉网络功能性状及其生态学意义. 植物生态学报, 37, 691-698.] |
[15] | Li L, Zhou DW (2011). Density-dependent regulation of above- and below-ground modules in Allium cepa var. proliferum populations. Chinese Journal of Plant Ecology, 35, 284-293. (in English with Chinese abstract)[黎磊, 周道玮 (2011). 红葱种群地上和地下构件的密度制约调节. 植物生态学报, 35, 284-293.] |
[16] | Liu MH, Xin ZM, Xu J, Sun F, Dou LJ, Li YH (2013). Influence of leaf size of plant on leaf transpiration and temperature in arid regions. Chinese Journal of Plant Ecology, 37, 436-442. (in English with Chinese abstract)[刘明虎, 辛智鸣, 徐军, 孙非, 窦立军, 李永华 (2013). 干旱区植物叶片大小对叶表面蒸腾及叶温的影响. 植物生态学报, 37, 436-442.] |
[17] | Mcdonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57. |
[18] | Nardini A, Raimondo F, Lo Gullo MA (2010). Leafminers help us understand leaf hydraulic design. Plant, Cell & Environment, 33, 1091-1100. |
[19] | Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896. |
[20] | Pitman EJG (1939). A note on normal correlation. Biometrika, 31, 9-12. |
[21] | Reich PB, Cornelissen H (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275-301. |
[22] | Ren QJ, Li HL, Bu HY (2015). Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow. Chinese Journal of Plant Ecology, 39, 593-603.[任青吉, 李宏林, 卜海燕 (2015). 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报, 39, 593-603.] |
[23] | Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483-491. |
[24] | Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000. |
[25] | Sack L, Scoffoni C, McKown AD (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 3, 837. |
[26] | Shi YC, Zhao CZ, Song QH, Du J, Chen NJ, Wang JW (2015). Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Plant Ecology, 39, 362-370. (in English with Chinese abstract)[史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟 (2015). 兰州北山刺槐枝叶性状的坡向差异性. 植物生态学报, 39, 362-370.] |
[27] | Silvertown J, Charlesworth D (2001). Introduction to Plant Population Biology. Blackwell, London. |
[28] | Sun SJ, Li FL, Bao WK (2015). Advances on construction of leaf venation system and its significance of phylogeny. Journal of Tropical and Subtropical Botany, 23, 353-360. (in English with Chinese abstract)[孙素静, 李芳兰, 包维楷 (2015). 叶脉网络系统的构建和系统学意义研究进展. 热带亚热带植物学报, 23, 353-360.] |
[29] | Uhl D, Mosbrugger V (1999). Leaf venation density as a climate and environmental proxy: A critical review and new data. Palaeoecology, 149, 15-26. |
[30] | Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216. (in Chinese with English abstract)[王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.] |
[31] | Wang J, Cheng JM, Wan HE, Fang F (2004). Study on soil moisture characteristics and water use efficiency of Achnatherum splendens grassland in Loess Plateau. Arid Meteorology, 22, 51-55. |
[32] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174. |
[33] | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291. |
[34] | Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[35] | West GB, Brown JH, Enquist BJ (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122-126. |
[36] | Westoby M, Falster DS, Moles AT (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology Systematics, 33, 125-159. |
[37] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The world- wide leaf economics spectrum. Nature, 428, 821-827. |
[38] | Wu GL, Chen M, Du GZ (2008). Effects of nutrient and lighton seedlings morphological plasticity of four Saussurea species with different ecological breadth. Chinese Journal of Applied Ecology, 19, 1708-1713. (in Chinese with English abstract)[武高林, 陈敏, 杜国祯 (2008). 营养和光照对不同生态幅风毛菊属植物幼苗形态可塑性的影响. 应用生态学报, 19, 1708-1713.] |
[39] | Wu HW, Li XY, Jing ZY, Li J, Zheng XR, Zhao DZ (2015). Variations in water use for Achnatherum splendens in Lake Qinghai watershed based on δD and δ18O. Acta Ecologica Sinica, 35, 8174-8183. (in English with Chinese abstract)[吴华武, 李小雁, 蒋志云, 李静, 郑肖然, 赵殿智 (2015). 基于δD、δ18O的青海湖流域芨芨草水分利用来源变化研究. 生态学报, 35, 8174-8183.] |
[40] | Wu ZS, Guo BZ (1989). Flora Repubulicae Popularis Sinicae. (Tomus 9). Science Press, Beijing. 1087. (in Chinese)[吴征镒, 郭本兆 (1989). 中国植物志(第九卷). 科学出版社, 北京. 1087.] |
[41] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change. Chinese Journal of Ecology, 31, 702-713. (in English with Chinese abstract)[杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] |
[42] | Zhan YF, Ma L, Li XY, Teng YF, Lu YF, Tian XP (2012). Niches of dominant populations of wetland plants in Zhangye section of Heihe River. Journal of Northeast Forestry University, 40(10), 61-66. (in English with Chinese abstract)[占玉芳, 马力, 李小燕, 滕玉风, 鲁延芳, 田晓萍 (2012). 黑河流域(张掖段)湿地植物群落优势种群生态位. 东北林业大学学报, 40(10), 61-66.] |
[43] | Zhang MJ, Liu MS, Xu C, Chi T, Hong C (2012). Spatial pattern responses of Achnatherum splendens to environmental stress in different density levels. Acta Ecologica Sinica, 32, 595-604. (in English with Chinese abstract)[张明娟, 刘茂松, 徐驰, 池婷, 洪超 (2012). 不同密度条件下芨芨草空间格局对环境胁迫的响应. 生态学报, 32, 595-604.] |
[44] | Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H (2012). Evolutionary association of stomatal traits with leaf vein- density in Paphiopedilum, Orchidaceae. PLOS ONE, 7, e40080. doi: 10.1371/journal.pone.0040080. |
[45] | Zhang YF, Wang W, Liang CZ, Wang LX, Pei H, Wang CY, Wang WF (2012). Suitable habitat for the Achnatherum splendens community in typical steppe region of Inner Mongolia. Acta Ecologica Sinica, 32, 1193-1201. (in English with Chinese abstract)[张翼飞, 王炜, 梁存柱, 王立新, 裴浩, 王成燕, 王伟峰 (2012). 内蒙古典型草原区芨芨草群落适生生境. 生态学报, 32, 1193-1201.] |
[46] | Zhang YQ, Liang CZ, Wang W, Wang LX, Peng JT, Yan JC, Jia JC (2010). Soil salinity and Achnatherum splendens distribution. Chinese Journal of Ecology, 29, 2438-2443. (in English with Chinese abstract)[张雅琼, 梁存柱, 王炜, 王立新, 彭江涛, 闫建成, 贾成朕 (2010). 芨芨草群落土壤盐分特征. 生态学杂志, 29, 2438-2443.] |
[47] | Zhou HH, Li WH (2105). Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica. Chinese Journal of Plant Ecology, 39, 81-91. (in English with Chinese abstract)[周洪华, 李卫红 (2015). 胡杨木质部水分传导对盐胁迫的响应与适应. 植物生态学报, 39, 81-91.] |
[1] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[2] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[3] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[4] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[5] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[6] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[7] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[8] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[9] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[10] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[11] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[12] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[13] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[14] | 方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650-658. |
[15] | 倪鸣源, ARITSARA Amy Ny Aina, 王永强, 黄冬柳, 项伟, 万春燕, 朱师丹. 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析[J]. 植物生态学报, 2021, 45(4): 394-403. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 4523
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1777
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La