植物生态学报 ›› 2017, Vol. 41 ›› Issue (2): 252-268.DOI: 10.17521/cjpe.2016.0195

• 综述 • 上一篇    下一篇

臭氧与干旱对植物复合影响的研究进展

高峰1,2, 李品1, 冯兆忠1,2,*   

  1. 1中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085
    2中国科学院大学, 北京 100049
  • 收稿日期:2016-06-12 接受日期:2016-12-16 出版日期:2017-02-10 发布日期:2017-03-16
  • 通讯作者: 冯兆忠
  • 作者简介:

    * 通信作者Author for correspondence (E-mail:sunzhiqiang1956@sina.com)

  • 基金资助:
    中国科学院“百人计划”项目和国家自然科学基金(31500396)

Interactive effects of ozone and drought stress on plants: A review

Feng GAO1,2, Pin LI1, Zhao-Zhong FENG1,2,*()   

  1. 1State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-06-12 Accepted:2016-12-16 Online:2017-02-10 Published:2017-03-16
  • Contact: Zhao-Zhong FENG
  • About author:

    KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

摘要:

地表臭氧(O3)浓度和干旱频率的持续增加成为限制植物生长的重要因素。O3通过气孔扩散进入植物组织内部, 产生并积累活性氧(ROS)自由基, 促发细胞程序性死亡。干旱破坏植物抗氧化系统对ROS的解毒和修复功能, 导致ROS累积。两种胁迫对植物的影响都是积累ROS并引发氧化胁迫, 使植物的光合作用和生理代谢机能受到限制, 最终阻碍植物生长, 导致生物量降低。然而, O3和干旱胁迫对植物的复合效应可能是协同加重植物损伤, 也可能是拮抗减轻植物伤害, 二者的交互影响存在复杂的作用过程。一方面, O3引起气孔响应滞后甚至失灵, 使植物对于两种胁迫的响应变得迟钝, 进而加重植物的蒸散失水和O3毒害。另一方面, 干旱使植物气孔关闭, 从而降低对O3的吸收量和水分蒸发, 但长期干旱限制CO2的吸收, 最终导致植物的生长受限。植物的响应过程不仅取决于两种胁迫作用的先后次序和持续时间, 而且受到植物本身生理代谢差异的影响。该文结合国内外研究, 从气孔、光合碳代谢、抗氧化系统和生长发育等方面阐述了O3和干旱胁迫对植物代谢调节和生长发育的复合影响, 并提出了未来研究的发展方向。

关键词: 臭氧, 干旱, 交互, 植物, 响应

Abstract:

Ground-level ozone (O3) and drought are two key factors limiting plant growth. O3 can enter into the plant tissue through the stomata, then causing the formation of reactive oxygen species (ROS) which inspires programmed cell death. Drought usually induces the accumulation of ROS due to damage to antioxidant systems of plants. The effects of two kinds of stress on plants are similar due to the accumulation of ROS, resulting in reduced photosynthesis rate and physiological metabolism, eventually decreased plant growth and biomass. Nevertheless, O3 and drought interacts synergistically to accumulate detrimental effects or antagonistically to reduce harmful effects. Actually, it is complex interactive process between O3 and drought. On the one hand, O3 triggers stomatal sluggishness or even dysfunction, which exacerbates water transpiration of leaves, water loss from plants and further O3 phytotoxicity. On the other hand, drought induces stomatal closure, and thus protecting plants against the O3 influx and evaporation of water. However, prolonged drought could limit the uptake of CO2 and thus result in reduced plant growth. The response of plants to both O3 and drought not only depends on the occurring sequence and duration of any factor but also rely on the difference in physiological metabolism of the plant itself. The interactive effects of O3 and drought on stomatal characteristics, photosynthetic carbon mechanism, antioxidant response and growth development are reviewed in this paper and the aspects to be further studied are also suggested.

Key words: O3, drought, interaction, plant, response