植物生态学报 ›› 2017, Vol. 41 ›› Issue (8): 894-913.DOI: 10.17521/cjpe.2017.0023
杨丽丽, 龚吉蕊*(), 刘敏, 杨波, 张子荷, 罗亲普, 翟占伟, 潘琰
出版日期:
2017-08-10
发布日期:
2017-09-29
通讯作者:
龚吉蕊
作者简介:
康璟瑶(1991-),男,江苏南京人,硕士生,主要从事旅游地理与旅游规划研究,E-mail:
基金资助:
Li-Li YANG, Ji-Rui GONG*(), Min LIU, Bo YANG, Zi-He ZHANG, Qin-Pu LUO, Zhan-Wei ZHAI, Yan PAN
Online:
2017-08-10
Published:
2017-09-29
Contact:
Ji-Rui GONG
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
随着人类干扰和全球变化的加剧, 大气氮沉降量迅速地增加, 对草地生态系统碳循环过程产生了显著影响。凋落物分解是陆地生态系统养分循环的关键过程, 也是土壤碳库的主要来源和维持土壤肥力的基础。凋落物分解深受非生物、生物因子及其交互作用的影响。氮沉降通过影响土壤氮有效性、凋落物产量和质量、土壤生物因子及凋落物分解环境来影响分解。该文综述了氮沉降对草地凋落物分解过程的影响及其机理, 包括对土壤氮有效性,凋落物产量、质量,土壤微生物和酶活性以及凋落物分解环境的影响, 在系统分析国内外研究现状的基础上, 探讨整合了目前氮沉降影响草地凋落物分解的主要研究内容、方向、方法以及存在的主要问题, 并对未来的重点研究方向进行了展望, 以期为深入研究草地生态系统碳循环过程与氮沉降之间的相互作用与反馈机制提供参考。
杨丽丽, 龚吉蕊, 刘敏, 杨波, 张子荷, 罗亲普, 翟占伟, 潘琰. 氮沉降对草地凋落物分解的影响研究进展. 植物生态学报, 2017, 41(8): 894-913. DOI: 10.17521/cjpe.2017.0023
Li-Li YANG, Ji-Rui GONG, Min LIU, Bo YANG, Zi-He ZHANG, Qin-Pu LUO, Zhan-Wei ZHAI, Yan PAN. Advances in the effect of nitrogen deposition on grassland litter decomposition. Chinese Journal of Plant Ecology, 2017, 41(8): 894-913. DOI: 10.17521/cjpe.2017.0023
研究区域 Study area | 氮添加浓度 N addition concentration | 影响分解的因子 Factors that affect decomposition | 参考文献 Reference |
---|---|---|---|
新疆阜康荒漠生态站 Fukang Desert Ecological Station of Xinjiang | 21 g?m-2?a-1 | 凋落物质量 Litter quality | Zhao et al., 2015a |
青藏高原 Qinghai-Xizang Plateau | 10 g?m-2?a-1 | 凋落物质量 Litter quality | Zhu et al., 2016a |
内蒙古温带草原 Nei Mongol temperate grassland | 0-15 g?m-2?a-1 | 凋落物质量 Litter quality | Li et al., 2016 |
中国南方种植园 China Southern Plantation | 0-10 g?m-2?a-1 | 凋落物化学计量、养分释放 Litter stoichiometry and nutrient release | Zhu et al., 2016b |
呼伦贝尔草甸草原 Hulunbeier meadow steppe | 0-2 g?m-2?a-1 | 凋落物质量 Litter quality | Zhang et al., 2013 |
英国Silwood公园 British Silwood Park | 5.5-330 mg?L-1 | 凋落物质量、土壤生物 Litter quality and soil biology | Smith & Bradford, 2003 |
澳大利亚落基山脉 Australia Rocky Mountains | 113-225 mg?L-1 | 微生物呼吸、土壤化学计量 Microbial respiration and soil stoichiometry | Finn et al., 2015 |
加拿大荒废草地 Canadian wasteland | 6 g?m-2?a-1 | 温度、凋落物质量 Temperature and litter quality | Henry & Moise, 2015 |
表1 氮添加对草地凋落物分解研究的区域和研究内容
Table 1 Current researches on litter decomposition under different nitrogen (N) addition treatments in grassland ecosystems
研究区域 Study area | 氮添加浓度 N addition concentration | 影响分解的因子 Factors that affect decomposition | 参考文献 Reference |
---|---|---|---|
新疆阜康荒漠生态站 Fukang Desert Ecological Station of Xinjiang | 21 g?m-2?a-1 | 凋落物质量 Litter quality | Zhao et al., 2015a |
青藏高原 Qinghai-Xizang Plateau | 10 g?m-2?a-1 | 凋落物质量 Litter quality | Zhu et al., 2016a |
内蒙古温带草原 Nei Mongol temperate grassland | 0-15 g?m-2?a-1 | 凋落物质量 Litter quality | Li et al., 2016 |
中国南方种植园 China Southern Plantation | 0-10 g?m-2?a-1 | 凋落物化学计量、养分释放 Litter stoichiometry and nutrient release | Zhu et al., 2016b |
呼伦贝尔草甸草原 Hulunbeier meadow steppe | 0-2 g?m-2?a-1 | 凋落物质量 Litter quality | Zhang et al., 2013 |
英国Silwood公园 British Silwood Park | 5.5-330 mg?L-1 | 凋落物质量、土壤生物 Litter quality and soil biology | Smith & Bradford, 2003 |
澳大利亚落基山脉 Australia Rocky Mountains | 113-225 mg?L-1 | 微生物呼吸、土壤化学计量 Microbial respiration and soil stoichiometry | Finn et al., 2015 |
加拿大荒废草地 Canadian wasteland | 6 g?m-2?a-1 | 温度、凋落物质量 Temperature and litter quality | Henry & Moise, 2015 |
研究方法 Method | 应用原理 Principle of application | 特点 Characteristics | 参考文献 Reference |
---|---|---|---|
凋落物网袋法 Litterbag method | 将凋落物装入尼龙网袋并放置于地表土壤中, 测定质量损失 The litter was loaded into a nylon mesh bag and placed in the surface soil to measure the mass loss | 最大程度模拟自然分解, 但隔离了部分土壤生物的作用 The maximum degree of simulation of natural decomposition, but with the isolation of some soil organisms | Smith & Bradford, 2003 |
室内培养法 Indoor culture method | 人为控制各因子梯度 Controlling the factor gradient artificially | 用于控制实验, 但不能真实反映分解状态 Manipulation experiments, but not relecting real conditions | Jiang et al., 2014 |
同位素示踪法 Isotope method | 用15N、13C同位素进行标记并追踪其转移情况 Litter is labeled with 15N, 13C isotopes to trace the transfer of these elements | 观察各养分元素的转移方向和转移速率 To study the direction and transfer rate of an element | Liu et al., 2013 |
红外光谱分析 Infrared spectroscopy | 利用近红外光光谱吸收特征来表示凋落物元素和化合物含量 The near infrared spectroscopy absorption characteristics are used to study elements and compound in decomposed litter | 同时测定凋落物中的多种元素和化合物含量 Determination of a variety of elements and compounds in the litter simultaneously | Fortunel et al., 2009 |
代谢组学 Metabolomics | 与核磁共振、气象色谱等结合, 测定代谢组分 Application of nuclear magnetic resonance and gas chromatography to study metabolic components | 探讨小分子物质随着环境因子的微小变化 Exploration of the changes of small molecules with tiny changes of environmental factors | Wallenstein et al., 2013 |
表2 凋落物分解的研究方法及特点
Table 2 Study methods of litter decomposition and their characteristics
研究方法 Method | 应用原理 Principle of application | 特点 Characteristics | 参考文献 Reference |
---|---|---|---|
凋落物网袋法 Litterbag method | 将凋落物装入尼龙网袋并放置于地表土壤中, 测定质量损失 The litter was loaded into a nylon mesh bag and placed in the surface soil to measure the mass loss | 最大程度模拟自然分解, 但隔离了部分土壤生物的作用 The maximum degree of simulation of natural decomposition, but with the isolation of some soil organisms | Smith & Bradford, 2003 |
室内培养法 Indoor culture method | 人为控制各因子梯度 Controlling the factor gradient artificially | 用于控制实验, 但不能真实反映分解状态 Manipulation experiments, but not relecting real conditions | Jiang et al., 2014 |
同位素示踪法 Isotope method | 用15N、13C同位素进行标记并追踪其转移情况 Litter is labeled with 15N, 13C isotopes to trace the transfer of these elements | 观察各养分元素的转移方向和转移速率 To study the direction and transfer rate of an element | Liu et al., 2013 |
红外光谱分析 Infrared spectroscopy | 利用近红外光光谱吸收特征来表示凋落物元素和化合物含量 The near infrared spectroscopy absorption characteristics are used to study elements and compound in decomposed litter | 同时测定凋落物中的多种元素和化合物含量 Determination of a variety of elements and compounds in the litter simultaneously | Fortunel et al., 2009 |
代谢组学 Metabolomics | 与核磁共振、气象色谱等结合, 测定代谢组分 Application of nuclear magnetic resonance and gas chromatography to study metabolic components | 探讨小分子物质随着环境因子的微小变化 Exploration of the changes of small molecules with tiny changes of environmental factors | Wallenstein et al., 2013 |
[1] |
Abbasi MK, Adams WA (2000). Gaseous N emission during simultaneous nitrification-denitrification associated with mineral N fertilization to a grassland soil under field conditions.Soil Biology & Biochemistry, 32, 1251-1259.
DOI URL |
[2] |
Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003). Is nitrogen deposition altering the nitrogen status of northern forests?BioScience, 53(4), 158-167.
DOI URL |
[3] |
Adair EC, Parton WJ, Grosso SJD (2008). Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates.Global Change Biology, 14, 2636-2660.
DOI URL |
[4] |
Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship.Oikos, 79, 439-449.
DOI URL |
[5] |
Aerts R (2006). The freezer defrosting: Global warming and litter decomposition rates in cold biomes.Journal of Ecology, 94, 713-724.
DOI URL |
[6] |
?gren GI, Bosatta E, Magill AH (2001). Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition.Oecologia, 128, 94-98.
DOI URL PMID |
[7] |
Allison SD, Gartner TB, Mack MC, McGuire K, Treseder K (2010). Nitrogen alters carbon dynamics during early succession in boreal forest.Soil Biology & Biochemistry, 42, 1157-1164.
DOI URL |
[8] |
Apolinário VXO, Dubeux JCB, Mello ACL (2014). Litter decomposition of signalgrass grazed with different stocking rates and nitrogen fertilizer levels.Agronomy Journal, 106(2), 1-6.
DOI URL |
[9] |
Arai H, Tokuchi N, Koba K (2007). Possible mechanisms leading to a delay in carbon stock recovery after land use change.Soil Science Society of America Journal, 71, 1636-1638.
DOI URL |
[10] |
Bai YF, Wu JG, Christopher MC, Shahid N, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands.Global Change Biology, 16, 358-372.
DOI URL |
[11] |
Barantal S, Roy J, Fromin N, Schimann H, H?ttenschwiler S (2011). Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest.Oecologia, 167, 241-252.
DOI URL PMID |
[12] |
Berg B, Matzner E (1997). Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems.Environmental Reviews, 5, 1-25.
DOI URL |
[13] | Berg B, McClaugherty C (2003). Plant Litter-Decomposition, Humus Formation, Carbon Sequestration. Springer, Berlin. |
[14] | Berg B, Staaf H (1980). Decomposition rate and chemical changes in decomposing needle litter of Scots pine: Influence of chemical composition. Ecological Bulletin, 32, 373-390. |
[15] |
Bontti EE, Decant JP, Munson SM, Gathany MA, Przeszlowska A, Haddix ML, Owens S, Burke IC, Parton WJ, Harmon ME (2009). Litter decomposition in grasslands of Central North America (US Great Plains).Global Change Biology, 15, 1356-1363.
DOI URL |
[16] |
Bowman WD, Cleveland CC, Halada L, Hresko J, Baron JS (2008). Negative impact of nitrogen deposition on soil buffering capacity.Nature Geoscience, 1, 767-770.
DOI URL |
[17] |
Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2016). Understanding the dominant controls on litter decomposition. Journal of Ecology, 104, 229-238.
DOI URL |
[18] |
Campbell EE, Parton WJ, Soong JL, Paustian K, Hobbs NT, Cotrufo MF (2016). Using litter chemistry controls on microbial processes to partition litter carbon fluxes with the Litter Decomposition and Leaching (LIDEL) Model.Soil Biology & Biochemistry, 100, 160-174.
DOI URL |
[19] |
Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition.Ecology, 81, 2359-2365.
DOI URL |
[20] |
Carrillo Y, Ball BA, Bradford MA, Jordan CF, Molina M (2011). Soil fauna alter the effects of litter composition on nitrogen cycling 290 in a mineral soil.Soil Biology & Biochemistry, 43, 1440-1449.
DOI URL |
[21] |
Chapin FSI, Vitousek PM, van Cleve K (1986). The nature of nutrient limitation in plant communities.The American Naturalist, 127, 48-58.
DOI URL |
[22] |
Chapin III FS, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer, New York.
DOI URL |
[23] |
Chartzoulakis K, Psarras G (2005). Global change effects on crop photosynthesis and production in Mediterranean: The case of Crete, Greece.Agriculture Ecosystems & Environment, 106, 147-157.
DOI URL |
[24] |
Chen D, Lan Z, Hu S, Bai Y (2015a). Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification.Soil Biology & Biochemistry, 89, 99-108.
DOI URL |
[25] |
Chen H, Dong S, Liu L, Ma C, Zhang T, Zhu X, Mo J (2013a). Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest.PLOS ONE, 8, e84101. doi: 10.1371/journal.pone.0084101.
DOI URL PMID |
[26] |
Chen H, Li DJ, Gurmesaa GA, Yu GR, Li LH, Zhang W, Fang HJ, Mo JM (2015b). Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta- analysis.Environmental Pollution, 206, 352-360.
DOI URL PMID |
[27] |
Chen YL, Xu ZW, Hu HW, Hu YJ, Hao ZP, Jiang Y, Chen BD (2013b). Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia.Applied Soil Ecology, 68(3), 36-45.
DOI URL |
[28] | Chen ZZ, Wang SP (2000). Typical Grassland Ecosystem in China. Science Press, Beijing.(in Chinese)[陈佐忠, 汪诗平 (2000). 中国典型草原生态系统. 科学出版社, 北京.] |
[29] |
Chomel M, Fernandez C, Bousquet-Melou A, Gers C, Monnier Y, Santonja M, Gauquelin T, Gros R, Lecareux C, Baldy V (2014). Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones.Journal of Ecology, 102, 411-424.
DOI URL |
[30] |
Chomel M, Fernandez C, Gallet C, DesRochers A, Pare D, Jackson BG, Baldy V (2016). Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling.Journal of Ecology, 104, 1527-1541.
DOI URL |
[31] |
Cleland EE, Harpole WS (2010). Nitrogen enrichment and plant communities.Annals of the New York Academy of Science, 1195, 46-61.
DOI URL PMID |
[32] |
Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013). Roots and associated fungi drive long- term carbon sequestration in boreal forest.Science, 339, 1615-1618.
DOI URL PMID |
[33] |
Compton JE, Watrud LS, Porteous LA, de Grood S (2004). Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest.Forest Ecology & Management, 196, 143-158.
DOI URL |
[34] |
Cornwell WK, Cornelissen JHC, Amatangelo K (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.Ecology Letters, 11, 1065-1071.
DOI URL |
[35] |
Deforest JL, Zak DR, Pregitzer KS, Burton AJ (2004). Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest.Soil Biology & Biochemistry, 36, 965-971.
DOI URL |
[36] |
Dirks I, Navon Y, Kanas D (2010). Atmospheric water vapor as driver of litter decomposition in Mediterranean shrubland and grassland during rainless seasons. Global Change Biology, 16, 2799-2812.
DOI URL |
[37] |
Eisenlord SD, Freedman Z, Zak DR, Xue K, He ZL, Zhou JL (2013). Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition.Applied and Environmental Microbiology, 79, 1191-1199.
DOI URL PMID |
[38] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecology Letters, 10, 1135-1142.
DOI URL |
[39] |
Esperschütz J, Welzl G, Schreiner K (2011). Incorporation of carbon from decomposing litter of two pioneer plant species into microbial communities of the detritusphere.FEMS Microbiology Letters, 320, 48-55.
DOI URL PMID |
[40] | Everard K, Seabloom EW, Harpole WS, de Mazancourt C (2010). Plant water use affects competition for nitrogen: Why drought favors invasive species in California.The American Naturalist, 2175, 85-97. |
[41] |
Fagerli H, Aas W (2008). Trends of nitrogen in air and precipitation: Model results and observations at EMEP sites in Europe, 1980-2003.Environmental Pollution, 154, 448-461.
DOI URL PMID |
[42] |
Fan J, Harris W, Zhong H (2016). Stoichiometry of leaf nitrogen and phosphorus of grasslands of the Inner Mongolian and Qinghai-Tibet Plateau in relation to climatic variables and vegetation organization levels.Ecological Research, 31, 821-829.
DOI URL |
[43] |
Finn D, Page K, Catton K, Strounina E, Kienzle M, Robertson F, Armstrong R, Dalal R (2015). Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry.Soil Biology & Biochemistry, 91, 160-168.
DOI URL |
[44] |
Fioretto A, Papa S, Curcio E (2000). Enzyme dynamics on decomposing leaf litter of Cistus incanus and Myrtus communisin in a Mediterranean ecosystem.Soil Biology & Biochemistry, 2, 1847-1855.
DOI URL |
[45] |
Flury S, Gessner MO (2011). Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a Marsh.Applied and Environmental Microbiology, 77, 803-809.
DOI URL PMID |
[46] |
Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K (2009). Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe.Ecology, 90, 598-611.
DOI URL PMID |
[47] |
Freedman ZB, Upchurch RA, Zak DR, Cline LC (2016). Anthropogenic N deposition slows decay by favoring bacterial metabolism: Insights from metagenomic analyses.Frontiers in Microbiology, 7, 259.
DOI URL PMID |
[48] |
Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC (2013). Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide.Journal of Ecology, 101, 943-952.
DOI URL |
[49] |
Frey SD, Knorr M, Parrent JL (2004). Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests.Forest Ecology and Management, 196, 159-171.
DOI URL |
[50] |
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, V?osmarty CJ (2004). Nitrogen cycles: Past, present, and future.Biogeochemistry, 70, 153-226.
DOI URL |
[51] |
Gandois L, Perrin AS, Probst A (2011). Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: A column experiment.Geochimica et Cosmochimica Acta, 75, 1175-1198.
DOI URL |
[52] |
Gao YH, Ma G, Zeng XY, Xu SQ, Wang DW (2015). Responses of microbial respiration to nitrogen addition in two alpine soils in the Qinghai-Tibetan Plateau.Journal of Environmental Biology, 36, 261-265.
URL PMID |
[53] |
Gartner TB, Cardon ZG (2004). Decomposition dynamics in mixed-species leaf litter.Oikos, 104, 230-246.
DOI URL |
[54] |
Gergócs V, Hufnagel L (2016). The effect of microarthropods on litter decomposition depends on litter quality.European Journal of Soil Biology, 75, 24-30.
DOI URL |
[55] |
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, H?ttenschwiler S (2010). Diversity meetsdecomposition.Trends in Ecology and Evolution, 25, 372-380.
DOI URL |
[56] |
Giese M, Gao YZ, Zhao Y, Pan QM, Lin S, Peth S, Brueck H (2009). Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland.Applied Soil Ecology, 41, 8-18.
DOI URL |
[57] |
Gliksman D, Rey A, Seligmann R (2016). Biotic degradation at night, abiotic degradation at day: Positive feedbacks on litter decomposition in drylands.Global Change Biology, 23, 1564-1574.
DOI URL PMID |
[58] |
Gough L, Osenberg CW, Gross KL, Collins SL (2000). Fertilization effects on species density and primary productivity in herbaceous plant communities.Oikos, 89, 428-439.
DOI URL |
[59] |
Guo D, Fan P (2007). Four hypotheses about the effects of soil nitrogen availability on fine root production and turnover.Journal of Applied Ecology, 18, 2354-2360.
URL PMID |
[60] |
Gracia-Palacios P, Maestre FT, Kattge J, Wall DH (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.Ecology Letters, 16, 1045-1053.
DOI URL PMID |
[61] |
Güsewell S, Gessner MO (2009). N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms.Functional Ecology, 23, 211-219.
DOI URL |
[62] |
H?ttenschwiler S, Vitousek PM (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling.Trends in Ecology & Evolution, 15, 238.
DOI URL PMID |
[63] |
Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication.Science, 324, 636-638.
DOI URL |
[64] |
Haynes AG, Schütz M, Buchmann N, Page-Dumroese DS, Busse MD, Risch AC (2014). Linkages between grazing history and herbivore exclusion on decomposition rates in mineral soils of subalpine grasslands.Plant and Soil, 374, 579-591.
DOI URL |
[65] | He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems.Chinese Journal of Plant Ecology, 34, 2-6.(in Chinese with English abstract)[贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] |
[66] |
He KJ, Qi Y, Huang YM, Chen HY, Sheng ZL, Xu Xia, Duan L (2016). Response of aboveground biomass and diversity to nitrogen addition—A five-year experiment in semi-arid grassland of Inner Mongolia, China.Scientific Reports, 6. 31919. doi: 10.1038/srep31919.
DOI URL PMID |
[67] |
Hedwall PO, Nordin A, Strengbom J, Brunet J, Olsson B (2013). Does background nitrogen deposition affect the response of boreal vegetation to fertilization?Oecologia, 173, 615-624.
DOI URL PMID |
[68] |
Henry H, Cleland EE, Field CB, Vitousek PM (2005). Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland.Oecologia, 142, 465-473.
DOI URL PMID |
[69] |
Henry HAL, Moise ERD (2015). Grass litter responses to warming and N addition: Temporal variation in the contributions of litter quality and environmental effects to decomposition.Plant and Soil, 389, 35-43.
DOI URL |
[70] |
Hessen DO, Agren GI, Anderson TR, Elser JJ, de Ruiter PC (2004). Carbon sequestration in ecosystems: The role of stoichiometry.Ecology, 85, 1179-1192.
DOI URL |
[71] |
Hobbie SE (2008). Nitrogen effects on decomposition: A five- year experiment in eight temperate sites.Ecology, 89, 2633-2644.
DOI URL PMID |
[72] |
Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012). Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment.Ecological Monographs, 82, 389-405.
DOI URL |
[73] |
Hogberg MN, Briones MJ, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, N?sholm T, H?gberg P (2010). Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest.New Phytologist, 187, 485-493. doi: 10.1111/j.1469-8137.2010.03274.x.
DOI URL PMID |
[74] | Hu ZM, Fan JW, Zhong HP, Han B (2005). Progress on grassland underground biomass researches in China.Chinese Journal of Ecology, 24, 1095-1101.(in Chinese with English abstract)[胡中民, 樊江文, 钟华平, 韩彬 (2005). 中国草地地下生物量研究进展. 生态学杂志, 24, 1095-1101.] |
[75] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[76] |
Jacobson TK, Bustamante MM, Kozovits AR (2010). Diversity of shrub tree layer, leaf litter decomposition and N release in a Brazilian Cerrado under N, P and N plus P additions.Environmental Pollution, 159, 2236-2242.
DOI URL PMID |
[77] |
Jiang XY, Cao LX, Zhang RD, Yan LJ, Mao Y, Yang YW (2014). Effects of nitrogen addition and litter properties on litter decomposition and enzyme activities of individual fungi.Applied Soil Ecology, 80, 108-115.
DOI URL |
[78] |
Johansson O, Palmqvist K, Olofsson J (2012). Nitrogen lichen community changes through differential species responses.Global Change Biology, 18, 2626-2635.
DOI URL |
[79] |
Kai Y, Yang W, Peng C, Peng Y, Zhang C, Huang C, Tan Y, Wu FZ (2016). Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Science of the Total Environment, 566-567, 279-287. doi: 10.1016/j.scitotenv.2016.05.081.
DOI URL PMID |
[80] |
Kang HZ, Xin ZJ, Berg B, Burgess PJ, Liu QL, Liu ZC (2010). Global pattern of leaf litter nitrogen and phosphorus in woody plants.Annals of Forest Science, 67, 811.
DOI URL |
[81] |
Keeler BL, Hobbie SE, Kellogg LE (2009). Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: Implications for litter and soil organic matter decomposition.Ecosystems, 12, 1-15.
DOI URL |
[82] |
Knicker H, Ludemann HD, Haider K (1997). Incorporation studies of NH4+ during incubation of organic residues by 15N-CPMAS-NMR-spectroscopy.European Journal of Soil Science, 48, 431-441.
DOI URL |
[83] |
Knorr M, Frey SD, Curtis PS (2008). Nitrogen additions and litter decomposition: A meta-analysis.Ecology, 86, 3252-3257.
DOI URL |
[84] |
Ladwig LM, Collins SL, Swann AL, Yang X, Allen MF, Allen EB (2012). Above- and below-ground responses to nitrogen addition in a chihuahuan desert grassland.Oecologia, 169, 177-185.
DOI URL PMID |
[85] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology, 89, 371-379.
DOI URL PMID |
[86] |
Li WY, Yu WC, Bai L, Liu HM, Yang DL (2016). Effects of nitrogen addition on the mixed litter decomposition in Stipa baicalensis steppe in Inner Mongolia.American Journal of Plant Sciences, 7, 547-561.
DOI URL |
[87] | Li YB, Li Q, Yang JJ, Lü XT, Liang WJ, Han XG (2016). Effect of simulated nitrogen deposition on litter quality in a temperate grassland.Chinese Journal of Ecology, 35, 2732-2737.(in Chinese with English abstract)[李英滨, 李琪, 杨俊杰, 吕晓涛, 梁文举, 韩兴国 (2016). 模拟氮沉降对温带草原凋落物质量的影响. 生态学杂志, 35, 2732-2737.] |
[88] | Liao LP, Gao H, Wang SL, Ma YQ, Huang ZQ, Yu XJ (2000). The effect of nitrogen addition on soil nutrient leaching and the decomposition of Chinese fir leaf litter.Acta Phytoecologica Sinica, 24, 34-39.(in Chinese with English abstract)[廖利平, 高洪, 汪思龙, 马越强, 黄志群, 于小军 (2000). 外加氮源对杉木叶凋落物分解及土壤养分淋失的影响. 植物生态学报, 24, 34-39.] |
[89] |
Liu J, Peng B, Xia ZW, Sun JF, Gao DC, Dai WW, Jiang P, Bai E (2016). Different fates of deposited NH4+ and NO3- in a temperate forest in northeast China: A 15N tracer study.Global Change Biology, 23, 2441-2449.
DOI URL PMID |
[90] |
Liu P, Huang JH, Sun OJ, Han X (2010). Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem.Oecologia, 162, 771-780.
DOI URL PMID |
[91] | Liu Q, Peng SL, Bi H, Zhang HY, Ma WH, Li NY (2004). The reciprocal decomposition of foliar litter in tropical and subtropical forests.Acta Scientiarum Naturalium Universitatis Sunyatseni, 43(4), 86-89.(in Chinese with English abstract)[刘强, 彭少麟, 毕华, 张洪溢, 马文辉, 李妮亚 (2004). 热带亚热带森林叶凋落物交互分解的研究. 中山大学学报自然科学版, 43(4), 86-89.] |
[92] | Liu Q, Peng SL (2010). Plant Litter Ecology. Science Press, Beijing. 54-95.(in Chinese)[刘强, 彭少麟 (2010). 植物凋落物生态学. 科学出版社, 北京. 54-95.] |
[93] | Liu SE, Li YY, Fang X, Huang WJ, Long FL, Liu JX (2015). Effects of the level and regime of nitrogen addition on seedling growth of four major tree species in subtropical China.Chinese Journal of Plant Ecology, 39, 950-961.(in Chinese with English abstract)[刘双娥, 李义勇, 方熊, 黄文娟, 龙凤玲, 刘菊秀 (2015). 不同氮添加量和添加方式对南亚热带4个主要树种幼苗生长的影响. 植物生态学报, 39, 950-961.] |
[94] |
Liu XJ, Duan L, Mo JM, Du EZ, Shen Jl, Lu XK, Zhang Y, Zhou XB, He C, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: An overview.Environmental Pollution, 159, 2251-2264.
DOI URL PMID |
[95] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China.Nature, 494, 459-462.
DOI URL PMID |
[96] |
Long M, Wu HH, Smith MD, Pierre K, Lü XT, Zhang HY, Han XG, Yu Q (2016). Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland.Plant and Soil, 408, 475-484.
DOI URL |
[97] | Lu GC, Shao YR, Xue L (2014). Research progress in the effect of nitrogen deposition on litter decomposition.World Forestry Research, 27(1), 35-42.(in Chinese with English abstract)[卢广超, 邵怡若, 薛立 (2014). 氮沉降对凋落物分解的影响研究进展. 世界林业研究, 27(1), 35-42.] |
[98] |
Lü XT, Kong DL, Pan QM, Simmons ME, Han XG (2012). Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland.Oecologia, 168, 301-310.
DOI URL PMID |
[99] |
Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013). Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland.Global Change Biology, 19, 2775-2784.
DOI URL PMID |
[100] |
Lummer D, Scheu S, Butenschoen O (2012). Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures.Oikos, 121, 1649-1655.
DOI URL |
[101] |
Luo QP, Gong JR, Zhai ZW, Pan Y, Liu M, Xu S, Wang YH, Yang LL, Baoyin TT (2016). The responses of soil respiration to nitrogen addition in a temperate grassland in northern China.Science of the Total Environment, 569, 1466-1477.
DOI URL PMID |
[102] |
Makhnev AK, Makhneva NE (2010). Landscape-ecological and population aspects of the strategy of restoration of 443 disturbed lands.Contemporary Problems of Ecology, 3, 318-322.
DOI URL |
[103] |
Manning P, Saunders M, Bardgett RD, Bonkowski M, Bradford MA, Ellis RJ, Kandeler E, Marhan S, Tscherko D (2008). Direct and indirect effects of nitrogen deposition on litter decomposition.Soil Biology & Biochemistry, 40, 688-698.
DOI URL |
[104] |
Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter.Ecological Monographs, 80, 89-106.
DOI URL |
[105] |
Meentemeyer V (1978). Macroclimate and lignin control of hardwood leaf litter fecomposition dynamics.Ecology, 59, 465-472.
DOI URL |
[106] |
Moorhead DL, Sinsabaugh RL (2006). A theoretical model of litter decay and microbial interaction.Ecological Monographs, 76, 151-174.
DOI URL |
[107] |
Ning QS, Gu Q, Shen JP, Lü XT, Yang JJ, Zhang XM, He JZ, Huang JH, Wang H, Xu ZH, Han XG (2015). Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China.Journal of Soils and Sediments, 15, 694-704.
DOI URL |
[108] |
Niu SL, Liu WX, Wan SQ (2008). Different growth responses of C3 and C4 grasses to seasonal water and nitrogen regimes and competition in a pot experiment.Journal of Experimental Botany, 59, 1431-1439.
DOI URL PMID |
[109] |
Pan F, Li Y, Chapman SJ, Khan S, Yao H (2016). Microbial utilization of rice straw and its derived biochar in a paddy soil. Science of the Total Environment, 559, 15-23.
DOI URL PMID |
[110] |
Pan QM, Bai YF, Han XG, Yang JC (2005). Effects of nitrogen additions on a Leymus Chinensis population in a typical steppe of Inner Mongolia.Acta Phytoecologica Sinica, 29, 311-317.
DOI URL |
[111] |
Peng Q, Qi YC, Dong YS, He YT, Xiao SS, Liu XC, Sun LJ, Jia JQ, Guo SF, Cao CC (2014). Litter decomposition and C and N dynamics as affected by N additions in a semi- arid temperate steppe, Inner Mongolia of China.Journal of Arid Land, 6, 432-444.
DOI URL |
[112] | Piao SL, Fang JY, Zhou LM, Tan K, Tao S (2007). Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles, 21, B2002 (1-10). doi: 10.1029/2005GB002634. |
[113] |
Prescott CE (2010). Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils?Biogeochemistry, 101, 133-149.
DOI URL |
[114] |
Qi YC, Peng Q, Dong YS, Xiao SS, Jia JQ, Guo SF, He YL, Yan ZQ, Wang LQ (2015). Responses of ecosystem carbon budget to increasing nitrogen deposition in differently degraded Leymus chinensis steppes in Inner Mongolia, China.Environment Science, (2), 625-635.(in Chinese with English abstract)[齐玉春, 彭琴, 董云社, 肖胜生, 贾军强, 郭树芳, 贺云龙, 闫钟清, 王丽芹 (2015). 不同退化程度羊草草原碳收支对模拟氮沉降变化的响应. 环境科学, (2), 625-635.]
DOI URL |
[115] |
Qualls RG, Richardson CJ (2000). Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms.Soil Science Society of America Journal, 64, 799-808.
DOI URL |
[116] |
Quested HM, Press MC, Callaghan TV, Cornelissen JHC (2002). The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities. Oecologia, 130, 88-95.
DOI URL PMID |
[117] |
Raich JW, Tufekciogul A (2000). Vegetation and soil respiration: Correlations and controls.Biogeochemistry, 48, 71-90.
DOI URL |
[118] |
Ren ZW, Li Q, Chu CJ, Zhao LQ, Zhang JQ, Ai D, Yang YB, Wang G (2010). Effects of resource additions on species richness and ANPP in an alpine meadow community.Journal of Plant Ecology, 3, 25-31.
DOI URL |
[119] | Rice EL (1984). Allelopathy. Academic Press, London. |
[120] |
Rousk J, B??th E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil.The ISME Journal, 4, 1340-1351.
DOI URL PMID |
[121] |
Rousk J, Brookes PC, B??th E (2011). Fungal and bacterial growth responses to N fertilization and pH in the 150-year “park grass” UK grassland experiment.FEMS Microbiology Ecology, 76, 89-99.
DOI URL PMID |
[122] |
Sala OE, Gherardi LA, Reichmann L, Jobbagy E, Peters D (2012). Legacies of precipitation fluctuations on primary production: Theory and data synthesis.Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3135-3144.
DOI URL PMID |
[123] |
Sall SN, Masse D, Bernhard-Reversat F, Guisse A, Chotte JL (2003). Microbial activities during the early stage of laboratory decomposition of tropical leaf litters: The effect of interactions between litter quality and exogenous inorganic nitrogen.Biology and Fertility of Soils, 39, 103-111.
DOI URL |
[124] |
Schilling EM, Waring BG, Schilling JS, Powers JS (2016). Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.Oecologia, 182, 1-11.
DOI URL PMID |
[125] |
Schuster MJ (2015). Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.Oecologia, 180, 1-11.
DOI URL PMID |
[126] | Shi Y (2014). Effects of Experimental Nitrogen Addition on Soil Enzyme Activities in Temperate Grassland of Inner Mongolia. Master degree dissertation, Northeast Normal University, Changchun.(in Chinese with English abstract)[施瑶 (2014). 氮沉降对内蒙古温带草原土壤酶活性影响的试验研究. 硕士学位论文, 东北师范大学, 长春.] |
[127] |
Silver WL, Miya RK (2001). Global patterns in root decomposition: Comparisons of climate and litter quality effects.Oecologia, 129, 407-419.
DOI URL PMID |
[128] |
Smith SW, Woodin SJ, Pakeman RJ, Johnson D, van der Wal R (2014). Root traits predict decomposition across a landscape-scale grazing experiment.New Phytologist, 203, 851-862.
DOI URL PMID |
[129] |
Smith VC, Bradford MA (2003). Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time.Applied Soil Ecology, 24, 197-203.
DOI URL |
[130] |
Solly EF, Sch?ning I, Boch S, Kandeler E, Marhan S, Michalzik B, Müller J, Zscheischler J, Trumbore SE, Schrumpf M (2014). Factors controlling decomposition rates of fine root litter in temperate forests and grasslands.Plant and Soil, 382, 203-218.
DOI URL |
[131] |
Song P, Zhang NL, Ma KP, Guo JX (2014). Impacts of global warming on litter decomposition. Acta Ecologica Sinica, 34, 1327-1339.(in Chinese with English abstract)[宋飘, 张乃莉, 马克平, 郭继勋 (2014). 全球气候变暖对凋落物分解的影响. 生态学报,34, 1327-1339.]
DOI URL |
[132] |
Song X, Li Q, Gu H (2017). Effect of nitrogen deposition and management practices on fine root decomposition in Moso bamboo plantations.Plant and Soil, 410, 207-215.
DOI URL |
[133] |
Stevens CJ, Smart SM, Henrys PA, Maskell LC, Cheffings CM, Whitfield C, Gowing DJG, Rowe EC, Dore AJ, Emmett BA (2012). Terricolous lichens as indicators of nitrogen deposition: Evidence from national records.Ecological Indicators, 20, 196-203.
DOI URL |
[134] | Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2014). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[135] |
Strickland MS, Rousk J (2010). Considering fungal: bacterial dominance in soils—Methods, controls and ecosystem implications.Soil Biology & Biochemistry, 42, 1385-1395.
DOI URL |
[136] |
Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization.Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392.
DOI URL PMID |
[137] |
Sun T, Dong L, Mao Z (2015). Simulated atmospheric nitrogen deposition alters decomposition of ephemeral roots.Ecosystems, 18(7), 1-13.
DOI URL |
[138] |
Sun T, Dong L, Wang Z, Lü X, Mao Z (2016). Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests.Soil Biology & Biochemistry, 93, 50-59.
DOI URL |
[139] |
Swift M, Heal O, Anderson J (1979). Decomposition in terrestial ecosystems.Applied Physics Letters, 83, 2772-2774.
DOI URL |
[140] |
Tessier M, Vivier JP, Ouin A, Gloaguen JC, Lefeuvre JC (2003). Vegetation dynamics and plant species interactions under grazed and ungrazed conditions in a western European salt marsh.Acta Oecologica, 24, 103-111.
DOI URL |
[141] |
Tiunov AV (2009). Particle size alters litter diversity effects on decomposition.Soil Biology & Biochemistry, 41, 176-178.
DOI URL |
[142] |
Turner MM, Henry HAL (2009). Interactive effects of warming and increased nitrogen deposition on 15N tracer retention in a temperate old field: Seasonal trends.Global Change Biology, 15, 2885-2893.
DOI URL |
[143] |
Valenzuela-Solano C, Crohn DM (2006). Are decomposition and N release from organic mulches determined mainly by their chemical composition? Soil Biology & Biochemistry, 38, 377-384.
DOI URL |
[144] |
Valera-Burgos J, Zunzunegui M, Cruz Diaz-Barradas M (2013). Do leaf traits and nitrogen supply affect decomposability rates of three Mediterranean species growing under different competition levels?Pedobiologia, 56, 113-119.
DOI URL |
[145] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions.Ecological Application, 20, 5-15.
DOI URL |
[146] |
Vivanco L, Austin AT (2011). Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina.Global Change Biology, 17, 1963-1974.
DOI URL |
[147] |
Wall DH, Bradford MA, John MG, Trofymow JA, Behan-Pelletier V, Bignell DDE (2008). Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent.Global Change Biology, 14, 2661-2677.
DOI URL PMID |
[148] |
Wallenstein MD, Haddix ML, Ayres E, Steltzer H, Magrini-Bair KA, Paul EA (2013). Litter chemistry changes more rapidly when decomposed at home but converges during decomposition-transformation.Soil Biology & Biochemistry, 57, 311-319.
DOI URL |
[149] |
Wang GL, Xue S, Liu F, Liu GB (2017). Nitrogen addition increases the production and turnover of the lower-order roots but not of the higher-order roots of Bothriochloa ischaemum. Plant and Soil, 415, 423-434.
DOI URL |
[150] |
Wang JY, Zhang XY, Wen XF, Wang SQ, Wang HM (2013). The effect of nitrogen deposition on forest soil organic matter and litter decompostion and the microbial mechanism.Acta Ecologica Sinica, 33, 1337-1346.(in Chinese with English abstract)[王晶苑, 张心昱, 温学发, 王绍强, 王辉民 (2013). 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制. 生态学报, 33, 1337-1346.]
DOI URL |
[151] |
Wang SQ, Yu GR (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements.Acta Ecologica Sinica, 28, 3937-3947.(in Chinese with English abstract)[王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.]
DOI URL |
[152] | Wang W, Wang T, Peng SS, Fang JY (2007). Review of winter CO2 efflux from soil: A key process of CO2 exchange between soil and atmosphere. Journal of Plant Ecology (Chinese Version), 31, 394-402.(in Chinese with English abstract)[王娓, 汪涛, 彭书时, 方精云 (2007). 冬季土壤呼吸: 不可忽视的地气CO2交换过程. 植物生态学报, 31, 394-402.] |
[153] | Wang XY, Zhao XY, Li YL (2013). Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review.Chinese Journal of Applied Ecology, 24, 3300-3310.(in Chinese with English abstract)[王新源, 赵学勇, 李玉霖 (2013). 环境因素对干旱半干旱区凋落物分解的影响研究进展. 应用生态学报, 24, 3300-3310.] |
[154] |
Wang YH, Gong JR, Liu M, Luo QP, Xu S, Pan Y, Zhai ZW (2015). Effects of land use and precipitation on above- and below-ground litter decomposition in a semi-arid temperate steppe in Inner Mongolia, China.Applied Soil Ecology, 96, 183-191.
DOI URL |
[155] |
Wardle DA, Bardgett RD, Klironomos JN, Set?l? H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota.Science, 304, 1629-1633.
DOI URL PMID |
[156] |
Waring BG (2013). Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest.Soil Biology & Biochemistry, 64, 89-95.
DOI URL |
[157] |
Weatherly HE, Zitzer SF, Coleman JS (2003). In situ litter decomposition and litter quality in a Mojave Desert ecosystem: Effects of elevated atmospheric CO2 and interannual climate variability.Global Change Biology, 9, 1223-1233.
DOI URL |
[158] |
Wilson EJ (1992). Foliar uptake and release of inorganic nitrogen compounds in Pinus sylvestris L. and Picea abies (L.) Karst.New Phytologist, 120, 407-416.
DOI URL |
[159] |
Xia J, Wan S (2008). Global response patterns of terrestrial plant species to nitrogen addition.New Phytologist, 179, 428-439.
DOI URL |
[160] |
Xia JY, Niu SL, Wan SQ (2009). Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe.Global Change Biology, 15, 1544-1556.
DOI URL |
[161] | Xia L, Wu FZ, Yang WQ, Tan B (2012). Contribution of soil fauna to the mass loss of Betula albosinensis leaf litter at early decomposition stage of subalpine forest litter in western Sichuan.Chinese Journal of Applied Ecology, 23, 301-306.(in Chinese with English abstract)[夏磊, 吴福忠, 杨万勤, 谭波 (2012). 川西亚高山森林凋落物分解初期土壤动物对红桦凋落叶质量损失的贡献. 应用生态学报, 23, 301-306.] |
[162] |
Xia M, Talhelm AF, Pregitzer KS (2015). Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests.New Phytologist, 208, 715-726.
DOI URL PMID |
[163] | Xiong Y, Xu GQ, Wu L (2012). Progress on non-additive effects of mixed litter decomposition.Environmental Science & Technology, 35(9), 56-60.(in Chinese with English abstract)[熊勇, 许光勤, 吴兰 (2012). 混合凋落物分解非加和性效应研究进展. 环境科学与技术, 35(9), 56-60.] |
[164] |
Xu XT, Liu HY, Song ZL, Wang W, Hu GZ, Qi ZH (2015). Response of aboveground biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian steppe, China. Scientific Reports, 5, 10284. doi: 10.1038/srep10284.
DOI URL PMID |
[165] |
Xu Y, Fan J, Ding W, Gunina A, Chen Z, Bol R, Luo J, Bolan N (2017). Characterization of organic carbon in decomposing litter exposed to nitrogen and sulfur additions: Links to microbial community composition and activity.Geoderma, 116-124.
DOI URL |
[166] |
Xu YH, Fan JL, Ding WX, Bol R, Chen ZM, Luo JF, Bolan N (2016). Stage-specific response of litter decomposition to N and S amendments in a subtropical forest soil.Biology & Fertility of Soils, 52, 711-724.
DOI URL |
[167] |
Yang LL, Gong JR, Wang YH, Liu M, Luo QP, Xu S, Pan Y, Zhai ZW (2016). Effects of grazing intensity and grazing exclusion on litter decomposition in the temperate steppe of Nei Mongol, China.Chinese Journal of Plant Ecology, 40, 748-759.(in Chinese with English abstract)[杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟 (2016) . 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响. 植物生态学报, 40, 748-759.]
DOI URL |
[168] |
Yang YH, Ji CJ, Ma WH, Wang SF, Wang SP, Han WX, Mohammat A, Robinson D, Smith P (2012). Significant soil acidification across northern China’s grasslands during 1980s-2000s.Global Change Biology, 18, 2292-2300.
DOI URL |
[169] |
Yoccoz NG (2012). The future of environmental DNA in ecology.Molecular Ecology, 21, 2031-2038.
DOI URL PMID |
[170] | Yu WC, Song XL, Wang H, Zhao JN, Lai X, Yang DL (2013). Advances in the effect of nitrogen deposition on grassland litter decomposition.Journal of Agricultural Resources and Environment, (6), 14-19.(in Chinese with English abstract)[于雯超, 宋晓龙, 王慧, 赵建宁, 赖欣, 杨殿林 (2013). 氮沉降对草原凋落物分解的影响. 农业资源与环境学报, (6), 14-19.] |
[171] |
Zeng FJ, Guo HF, Liu B, Zeng J, Xing WJ, Zhang XL (2010). Characteristics of biomass allocation and root distribution of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. seedlings.Arid Land Geography, 33, 59-64.
DOI URL |
[172] | Zhang CH (2013). Shoot and Root Tissues Decomposition and Its Underlying Mechanisms of Dominant Species in a Temperate Steppe of Hulun Buir, Inner Mongolia. PhD dissertation, The University of Chinese Academy of Sciences, Beijing.(in Chinese with English abstract)[张彩虹 (2013). 呼伦贝尔草甸草原主要优势植物地上部凋落物和根系组织分解过程及其控制机制. 博士学位论文, 中国科学院大学, 北京.] |
[173] |
Zhang CH, Li SG, Zhang LM, Xin XP, Liu XR ( 2013). Effects of species and low dose nitrogen addition on litter decomposition of three dominant grasses in Hulun Buir Meadow Steppe.Journal of Resources & Ecology, 4, 20-26.
DOI URL |
[174] |
Zhang D, Hui D, Luo Y, Zhou G (2008). Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors.Journal of Plant Ecology, 1, 85-93.
DOI URL |
[175] | Zhang NL, Guo JX, Wang XY, Ma KP (2007). Soil microbial feedbacks to climate warming and atmospheric N deposition. Journal of Plant Ecology (Chinese Version), 31, 252-261.(in Chinese with English abstract)[张乃莉, 郭继勋, 王晓宇, 马克平 (2007). 土壤微生物对气候变暖和大气N沉降的响应. 植物生态学报, 31, 252-261.] |
[176] |
Zhang W, Chao L, Yang Q (2016). Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.Ecology, 97, 2834.
DOI URL PMID |
[177] |
Zhang YH, Feng J, Isbell F, Lü XT, Han XG (2015a). Productivity depends more on the rate than the frequency of N addition in a temperate grassland.Scientific Reports, 5, 12558. doi: 10.1038/srep12558.
DOI URL PMID |
[178] |
Zhang YB, Luo P, Sun G, Mou CX, Wang ZY, Wu N, Luo GR (2012). Effects of grazing on litter decomposition in two alpine meadow on the eastern Qinghai-Tibet Plateau.Acta Ecologica Sinica, 32, 4605-4617.(in Chinese with English abstract)[张艳博, 罗鹏, 孙庚, 牟成香, 王志远, 吴宁, 罗光荣 (2012). 放牧对青藏高原东部两种典型高寒草地类型凋落物分解的影响. 生态学报, 32, 4605-4617.]
DOI URL |
[179] |
Zhang YH, Stevens CJ, Lü XT, He NP, Huang JH, Han XG (2015b). Fewer new species colonize at low frequency N addition in a temperate grassland.Functional Ecology, 30, 1247-1256.
DOI URL |
[180] |
Zhao H, Huang G, Li Y, Ma J, Sheng JD, Jia HT, Li CJ (2015a). Effects of increased summer precipitation and nitrogen addition on root decomposition in a temperate desert.PLOS ONE, 10, e0142380. doi: 10.1371/journal.pone. 0142380.
DOI URL PMID |
[181] |
Zhao Y, Wu F, Yang W (2015b). Variations in bacterial communities during foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau.Canadian Journal of Microbiology, 62, 35-48.
DOI URL PMID |
[182] |
Zhou GY, Guan LL, Wei XH (2008). Factors influencing leaf litter decomposition: An intersite decomposition experiment across China. Plant and Soil, 311, 61-72.
DOI URL |
[183] | Zhou ZH, Wang CK (2016). Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry.Chinese Journal of Plant Ecology, 40, 620-630.(in Chinese with English abstract)[周正虎, 王传宽 (2016). 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40, 620-630.] |
[184] |
Zhu FF, Yoh M, Gilliam FS, Yoh M, Lu XK, Mo JM (2013). Nutrient limitation in three lowland tropical forests in southern china receiving high nitrogen deposition: Insights from fine root responses to nutrient additions.PLOS ONE, 8, e82661. doi: 10.1371/journal.pone.0082661.
DOI URL PMID |
[185] |
Zhu W, Wang J, Zhang Z, Ren F, Chen L, He JS (2016a). Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinhai- Tibet Plateau.Scientific Reports, 6, 34290. doi: 10.1038/ srep34290.
DOI URL PMID |
[186] |
Zhu X, Chen H, Zhang W, Huang J, Fu SL, Liu ZF, Mo JM (2016b). Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-fixing vs. non-N2-fixing tree species.Plant and Soil, 399, 61-74.
DOI URL |
[187] |
Zhu X, Zhang W, Chen H, Mo J (2015). Impacts of nitrogen deposition on soil nitrogen cycle in forest ecosystems: A review.Acta Ecologica Sinica, 35, 35-43.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[5] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[6] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[7] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[10] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[11] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[12] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[13] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[14] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[15] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19