植物生态学报 ›› 2019, Vol. 43 ›› Issue (8): 697-708.DOI: 10.17521/cjpe.2019.0131
收稿日期:
2019-05-30
修回日期:
2019-08-04
出版日期:
2019-08-20
发布日期:
2020-01-03
通讯作者:
王延平 ORCID:0000-0003-1892-1409
CHEN Xu1,LIU Hong-Kai1,ZHAO Chun-Zhou2,WANG Qiang3,WANG Yan-Ping1,*()
Received:
2019-05-30
Revised:
2019-08-04
Online:
2019-08-20
Published:
2020-01-03
Contact:
WANG Yan-Ping ORCID:0000-0003-1892-1409
摘要:
叶片作为植物与大气环境连接的重要纽带, 对逆境具有强烈的响应。基于叶性状探讨植物对环境的适应机制对盐碱地植物群落构建具有指导意义。该研究以山东省滨海盐碱地3种不同土壤条件下的11个造林树种为对象, 通过对各树种叶解剖性状的测定分析, 阐明叶片功能性状与盐碱地土壤环境的关系, 以期为盐碱地植被修复与群落构建提供科学依据。主要研究结果: (1) 11个树种的叶片厚度较大, 栅栏组织发达, 紧密排列在叶肉近轴面, 呈3-5层。各树种叶片的栅栏组织与海绵组织厚度比值(PT/ST)普遍较高但差异较大, 可指示叶解剖特征在树种间的差异性。(2)不同树种的叶解剖结构在立地环境间具有显著差异, PT/ST可作为指示指标。(3)相关分析和冗余分析表明, 树种叶片解剖结构与立地土壤条件具有密切联系。PT/ST与土壤理化性质相关程度高, 且与土壤pH以及土壤电导率(25 ℃)均呈显著正相关关系, 与土壤硝态氮含量呈显著负相关关系。叶片特征和叶脉特征可解释叶性状随环境变异约84%的信息量。综上所述,叶解剖结构与盐碱地土壤条件存在密切关系, 基于叶解剖特征可进一步分析树种对盐碱环境的适应性, 并为盐碱地植物群落构建的树种选择提供科学依据。
陈旭, 刘洪凯, 赵春周, 王强, 王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报, 2019, 43(8): 697-708. DOI: 10.17521/cjpe.2019.0131
CHEN Xu, LIU Hong-Kai, ZHAO Chun-Zhou, WANG Qiang, WANG Yan-Ping. Responses of foliar anatomical traits to soil conditions in 11 tree species on coastal saline-alkali sites of Shandong, China. Chinese Journal of Plant Ecology, 2019, 43(8): 697-708. DOI: 10.17521/cjpe.2019.0131
立地 site | 树种 Species | 代码 Abbreviation | 科 Family | 落叶/常绿 Deciduous/Evergreen | 生活型 Life form | 叶型 Simple/ Compound leaf |
---|---|---|---|---|---|---|
立地1: 重度盐碱 Site 1: Severe saline alkali | 白榆 Ulmus pumila | ULPU | 榆科 Ulmaceae | D | A | S |
白蜡2 Fraxinus chinensis 2 | FRCH2 | 木犀科 Oleaceae | D | A | C | |
立地2: 中度盐碱 Site 2: Moderate saline alkali | 皂角 Gleditsia sinensis | GLSI | 豆科 Leguminosae | D | A | C |
臭椿 Ailanthus altissima | AIAL | 苦木科 Simaroubaceae | D | A | C | |
白蜡1 Fraxinus chinensis 1 | FRCH1 | 木犀科 Oleaceae | D | A | C | |
槐 Sophora japonica | SOJA | 蝶形花科 Papilionaceae | D | A | C | |
欧美杨I-107 Populus × euramericana ‘I-107’ | POEU | 杨柳科 Salicaceae | D | A | S | |
旱柳 Salix matsudana | SAMA | 杨柳科 Salicaceae | D | A | S | |
三球悬铃木 Platanus orientalis | PLOR | 悬铃木科 Platanaceae | D | A | S | |
立地3: 轻度盐碱 Site 3: Mild saline alkali | 枣树 Ziziphus jujuba | ZIJU | 鼠李科 Rhamnaceae | D | A | S |
桃树 Amygdalus persica | AMPE | 蔷薇科 Rosaceae | D | A | S | |
白梨 Pyrus bretschneideri | PYBR | 蔷薇科 Rosaceae | D | A | S |
表1 山东滨海盐碱地不同立地条件下的11个造林树种
Table 1 The 11 tree species for afforestation of different sites on the coastal saline-alkali land of Shandong Province
立地 site | 树种 Species | 代码 Abbreviation | 科 Family | 落叶/常绿 Deciduous/Evergreen | 生活型 Life form | 叶型 Simple/ Compound leaf |
---|---|---|---|---|---|---|
立地1: 重度盐碱 Site 1: Severe saline alkali | 白榆 Ulmus pumila | ULPU | 榆科 Ulmaceae | D | A | S |
白蜡2 Fraxinus chinensis 2 | FRCH2 | 木犀科 Oleaceae | D | A | C | |
立地2: 中度盐碱 Site 2: Moderate saline alkali | 皂角 Gleditsia sinensis | GLSI | 豆科 Leguminosae | D | A | C |
臭椿 Ailanthus altissima | AIAL | 苦木科 Simaroubaceae | D | A | C | |
白蜡1 Fraxinus chinensis 1 | FRCH1 | 木犀科 Oleaceae | D | A | C | |
槐 Sophora japonica | SOJA | 蝶形花科 Papilionaceae | D | A | C | |
欧美杨I-107 Populus × euramericana ‘I-107’ | POEU | 杨柳科 Salicaceae | D | A | S | |
旱柳 Salix matsudana | SAMA | 杨柳科 Salicaceae | D | A | S | |
三球悬铃木 Platanus orientalis | PLOR | 悬铃木科 Platanaceae | D | A | S | |
立地3: 轻度盐碱 Site 3: Mild saline alkali | 枣树 Ziziphus jujuba | ZIJU | 鼠李科 Rhamnaceae | D | A | S |
桃树 Amygdalus persica | AMPE | 蔷薇科 Rosaceae | D | A | S | |
白梨 Pyrus bretschneideri | PYBR | 蔷薇科 Rosaceae | D | A | S |
图2 盐碱地树种叶横切解剖结构照片(臭椿)。A, 叶片横切面结构。B, 叶脉横切面结构。Ca, 形成层; LE, 下表皮; MVD, 中脉直径; Ph, 韧皮部; PT, 栅栏组织; ST, 海绵组织; UE, 上表皮; X, 木质部。
Fig. 2 Cross-section schematic photos of the anatomical structure of leaves on the saline-alkali land (Ailanthus altissima). A, Anatomical structure of leaves. B, Anatomical structure of veins. Ca, cambium; LE, lower epidermis; MVD, main vascular diameter; Ph, phloem; PT, palisade tissue; ST, sponge tissue; UE, upper epidermis; X, xylem.
立地 Site | 树种 Tree species | pH | 电导率 Electrical conductivity (μs·cm-1) | 铵态氮含量 Ammonium nitrogen content (mg·kg-1) | 硝态氮含量 Nitrate nitrogen content (mg·kg-1) | 速效磷含量 Available phosphorus content (mg·kg-1) |
---|---|---|---|---|---|---|
立地1: 重度盐碱 Site 1: Severe saline-alkali | ULPU | 8.530 ± 0.024a | 1 079.213 ± 5.468a | 16.445 ± 0.563b | 15.121 ± 2.274d | 2.821 ± 0.588d |
FRCH2 | 8.416 ± 0.008ab | 891.560 ± 1.240b | 14.312 ± 2.176b | 12.314 ± 2.300d | 3.080 ± 0.903d | |
立地2: 中度盐碱 Site 2: Moderate saline-alkali | GLSI | 8.318 ± 0.018b | 462.107 ± 2.981ef | 16.019 ± 0.958b | 20.833 ± 4.088cd | 1.055 ± 0.408d |
AIAL | 8.262 ± 0.024bc | 467.480 ± 21.513ef | 17.102 ± 0.585ab | 26.875 ± 1.522abcd | 1.392 ± 0.323d | |
FRCH1 | 8.384 ± 0.029ab | 426.147 ± 5.373fg | 8.277 ± 0.053c | 18.472 ± 3.017d | 1.160 ± 0.352d | |
SOJA | 8.339 ± 0.064b | 413.747 ± 4.195g | 19.815 ± 2.244ab | 18.142 ± 1.287d | 1.787 ± 0.310d | |
POEU | 8.119 ± 0.035cd | 447.640 ± 11.251efg | 16.652 ± 1.018b | 17.927 ± 4.372d | 1.946 ± 0.360d | |
SAMA | 8.028 ± 0.133d | 476.987 ± 32.966de | 19.002 ± 1.703ab | 25.899 ± 12.187bcd | 1.414 ± 0.205d | |
PLOR | 8.123 ± 0.073cd | 439.787 ± 16.580efg | 17.741 ± 0.522ab | 27.589 ± 5.318abcd | 0.997 ± 0.249d | |
立地3: 轻度盐碱 Site 3: Mild saline-alkali | ZIJU | 8.018 ± 0.086d | 511.293 ± 4.195cd | 16.886 ± 2.191ab | 38.628 ± 2.160ab | 33.517 ± 2.265b |
AMPE | 8.020 ± 0.018d | 534.440 ± 1.432c | 6.704 ± 1.078c | 41.849 ± 3.668a | 13.716 ± 0.301c | |
PYBR | 7.998 ± 0.071d | 460.453 ± 2.981ef | 22.404 ± 3.787ab | 35.951 ± 4.004abc | 38.846 ± 2.215a |
表2 山东滨海盐碱地11个树种所在林地土壤理化性质(平均值±标准误差)
Table 2 Physiochemical properties of the forest sites for the 11 tree species on the coastal saline-alkali land of Shandong Province (mean ± SE)
立地 Site | 树种 Tree species | pH | 电导率 Electrical conductivity (μs·cm-1) | 铵态氮含量 Ammonium nitrogen content (mg·kg-1) | 硝态氮含量 Nitrate nitrogen content (mg·kg-1) | 速效磷含量 Available phosphorus content (mg·kg-1) |
---|---|---|---|---|---|---|
立地1: 重度盐碱 Site 1: Severe saline-alkali | ULPU | 8.530 ± 0.024a | 1 079.213 ± 5.468a | 16.445 ± 0.563b | 15.121 ± 2.274d | 2.821 ± 0.588d |
FRCH2 | 8.416 ± 0.008ab | 891.560 ± 1.240b | 14.312 ± 2.176b | 12.314 ± 2.300d | 3.080 ± 0.903d | |
立地2: 中度盐碱 Site 2: Moderate saline-alkali | GLSI | 8.318 ± 0.018b | 462.107 ± 2.981ef | 16.019 ± 0.958b | 20.833 ± 4.088cd | 1.055 ± 0.408d |
AIAL | 8.262 ± 0.024bc | 467.480 ± 21.513ef | 17.102 ± 0.585ab | 26.875 ± 1.522abcd | 1.392 ± 0.323d | |
FRCH1 | 8.384 ± 0.029ab | 426.147 ± 5.373fg | 8.277 ± 0.053c | 18.472 ± 3.017d | 1.160 ± 0.352d | |
SOJA | 8.339 ± 0.064b | 413.747 ± 4.195g | 19.815 ± 2.244ab | 18.142 ± 1.287d | 1.787 ± 0.310d | |
POEU | 8.119 ± 0.035cd | 447.640 ± 11.251efg | 16.652 ± 1.018b | 17.927 ± 4.372d | 1.946 ± 0.360d | |
SAMA | 8.028 ± 0.133d | 476.987 ± 32.966de | 19.002 ± 1.703ab | 25.899 ± 12.187bcd | 1.414 ± 0.205d | |
PLOR | 8.123 ± 0.073cd | 439.787 ± 16.580efg | 17.741 ± 0.522ab | 27.589 ± 5.318abcd | 0.997 ± 0.249d | |
立地3: 轻度盐碱 Site 3: Mild saline-alkali | ZIJU | 8.018 ± 0.086d | 511.293 ± 4.195cd | 16.886 ± 2.191ab | 38.628 ± 2.160ab | 33.517 ± 2.265b |
AMPE | 8.020 ± 0.018d | 534.440 ± 1.432c | 6.704 ± 1.078c | 41.849 ± 3.668a | 13.716 ± 0.301c | |
PYBR | 7.998 ± 0.071d | 460.453 ± 2.981ef | 22.404 ± 3.787ab | 35.951 ± 4.004abc | 38.846 ± 2.215a |
图3 基于土壤理化性质的山东滨海盐碱立地聚类分析。
Fig. 3 Cluster analysis of tree species based on soil physiochemical properties on the coastal saline-alkali land of Shandong Province.
![]() |
表3 山东滨海盐碱地不同立地树种叶解剖性状(平均值±标准误差)
Table 3 Foliar anatomical characteristics of tree species on different sites on the coastal saline-alkali land of Shandong Province (mean ± SE)
![]() |
![]() |
表4 山东滨海盐碱地不同立地中树种叶解剖性状特征(平均值±标准误差)
Table 4 Foliar anatomical traits of trees on different sites on the coastal saline-alkali land of Shandong Province (mean ± SE)
![]() |
相关性 Correlation | 中脉直径 MV diameter | 木质部厚度 X thickness | 叶厚度 Leaf thickness | 栅栏组织厚度 PT thickness | 海绵组织厚度 ST thickness | 栅栏/海绵组织 PT/ST |
---|---|---|---|---|---|---|
土壤pH Soil pH | -0.355 | -0.446 | 0.052 | 0.154 | -0.288 | 0.667* |
土壤电导率 Soil EC25℃ | -0.002 | -0.166 | 0.330 | 0.362 | -0.114 | 0.782** |
铵态氮含量 NH4-N content | 0.531 | 0.597* | 0.318 | 0.157 | 0.427 | -0.282 |
硝态氮含量 NO3-N content | 0.357 | 0.428 | -0.094 | -0.195 | 0.202 | -0.592* |
速效磷含量 AP content | 0.373 | 0.462 | 0.469 | 0.297 | 0.561 | -0.226 |
表5 山东滨海盐碱地林地土壤理化性质与叶解剖性状相关性
Table 5 Correlations between physiochemical properties of forest sites and foliar anatomical characteristics on the coastal saline-alkali land of Shandong Province
相关性 Correlation | 中脉直径 MV diameter | 木质部厚度 X thickness | 叶厚度 Leaf thickness | 栅栏组织厚度 PT thickness | 海绵组织厚度 ST thickness | 栅栏/海绵组织 PT/ST |
---|---|---|---|---|---|---|
土壤pH Soil pH | -0.355 | -0.446 | 0.052 | 0.154 | -0.288 | 0.667* |
土壤电导率 Soil EC25℃ | -0.002 | -0.166 | 0.330 | 0.362 | -0.114 | 0.782** |
铵态氮含量 NH4-N content | 0.531 | 0.597* | 0.318 | 0.157 | 0.427 | -0.282 |
硝态氮含量 NO3-N content | 0.357 | 0.428 | -0.094 | -0.195 | 0.202 | -0.592* |
速效磷含量 AP content | 0.373 | 0.462 | 0.469 | 0.297 | 0.561 | -0.226 |
图4 叶解剖性状与土壤理化性质相关性的冗余分析(RDA)。箭头表示树种叶片解剖性状及土壤理化性质, 实心三角形表示本研究中涉及的11个树种。AP, 土壤速效磷含量; EC, 土壤电导率(25 ℃); LT, 叶厚度; MVD, 中脉直径; NH4-N, 土壤铵态氮含量; NO3-N, 土壤硝态氮含量; pH, 土壤pH值; PT/ST, 栅栏组织厚度/海绵组织厚度; PTT, 栅栏组织厚度; STT, 海绵组织厚度; UET, 上表皮厚度; XT, 木质部厚度。树种缩写同表1。
Fig. 4 Redundancy analysis (RDA) based on foliar anatomical characteristics and soil physiochemical properties correlation. Arrows indicate the foliar anatomical characteristics of tree species and soil physiochemical properties of sites, and the solid triangles designate the 11 tree species. AP, soil available phosphorus content; EC, soil electrical conductivity (25 ℃); LT, leaf thickness; MVD, main vascular diameter; NH4-N, soil ammonium nitrogen content; NO3-N, soil nitrate nitrogen content; pH, soil pH; PT/ST, palisade tissue/sponge tissue; PTT, palisade tissue thickness; STT, sponge tissue thickness; UET, upper epidermis thickness; XT, xylem diameter. See table 1 for species abbreviation.
[1] | Bao SD (2000). Soil Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. |
[ 鲍士旦 (2000). 土壤农化分析. 第三版. 中国农业出版社, 北京.] | |
[2] | Bjorkman AD, Elmendorf SC, Beamish AL, Vellend M, Henry GHR (2015). Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Global Change Biology, 21, 4651-4661. |
[3] | Bu WS, Zang RG, Ding Y, Zhang JY, Ruan YZ (2013). Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China. Biodiversity Science, 21, 278-287. |
[ 卜文圣, 臧润国, 丁易, 张俊艳, 阮云泽 (2013). 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化. 生物多样性, 21, 278-287.] | |
[4] | Caringella MA, Bongers FJ, Sack L (2015). Leaf hydraulic conductance varies with vein anatomy across a rabidopsis thaliana wild-type and leaf vein mutants. Plant, Cell & Environment, 38, 2735-2746. |
[5] | Coble AP, Fogel ML, Parker GG (2017). Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance. Tree Physiology, 37, 1415-1425. |
[6] | Ding CX, Li YQ, Dong Z, Yin RB, Wang YM, Shen YK (2013). Effects of different land use modes on physical and chemical properties of saline-alkali soil in Yellow River Delta. Science of Soil and Water Conservation, 11(2), 84-89. |
[ 丁晨曦, 李永强, 董智, 尹若波, 王雅楣, 沈运扩 (2013). 不同土地利用方式对黄河三角洲盐碱地土壤理化性质的影响. 中国水土保持科学, 11(2), 84-89.] | |
[7] | Dong HY, Zhu ZL, Li XH, Yang LP, Zhang Z (2017). Analysis on distribution, utilization status and governance effect of saline-alkali soil in Shandong Province. Shandong Agricultural Sciences, 49(5), 134-139. |
[ 董红云, 朱振林, 李新华, 杨丽萍, 张正 (2017). 山东省盐碱地分布、改良利用现状与治理成效潜力分析. 山东农业科学, 49(5), 134-139.] | |
[8] | Dong ZY, Yao YF, Zhao JR, Jia ZC (2000). Anatomical observations on the plotosynthatic branch of Haloxylon ammodendrom(C. A. Mey) Bunge and it is the character of drought and salt resistance. Journal of Arid Land Resources and Environment, 14(suppl.), 78-83. |
[ 董占元, 姚云峰, 赵金仁, 贾志成 (2000). 梭梭(Haloxylon ammodend rom (C. A. Mey) Bunge)光合枝细胞组织学观察及其抗逆性特征. 干旱区资源与环境, 14(增刊), 78-83.] | |
[9] | Dörken VM, Lepetit B (2018). Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba Mill.(Pinaceae, Coniferales): A combined approach. Plant, Cell & Environment, 41, 1683-1697. |
[10] | Duan YY, Song LJ, Niu SQ, Huang T, Yang GH, Hao WF (2017). Variation in leaf functional traits of different-aged Robinia pseudoacacia communities and relationships with soil nutrients. Chinese Journal of Applied Ecology, 28, 28-36. |
[ 段媛媛, 宋丽娟, 牛素旗, 黄婷, 杨改河, 郝文芳 (2017). 不同林龄刺槐叶功能性状差异及其与土壤养分的关系. 应用生态学报, 28, 28-36.] | |
[11] | Fan H, Wu J, Liu W, Yuan Y, Hu L, Cai Q (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 392, 127-138. |
[12] | Flowers TJ, Colmer TD (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945-963. |
[13] | García-Palacios P, Maestre FT, Milla R (2013). Community-aggregated plant traits interact with soil nutrient heterogeneity to determine ecosystem functioning. Plant and Soil, 364, 119-129. |
[14] | Guo R, Zhou J, Liu Q, Gu FX (2018). Characterization of nutrient elements at different leaf positions in Phragmites australis in Songnen degraded grassland. Chinese Journal of Plant Ecology, 42, 734-740. |
[ 郭瑞, 周际, 刘琪, 顾峰雪 (2018). 松嫩退化草地芦苇不同叶位叶片营养元素代谢特征. 植物生态学报, 42, 734-740.] | |
[15] | Hanumantha RB, Nair RM, Nayyar H (2016). Salinity and high temperature tolerance in mungbean [Vigna radiata(L.) Wilczek] from a physiological perspective. Frontiers in Plant Science, 7, 957. DOI: 10.3389/fpls.2016.00957. |
[16] | Högberg P, Näsholm T, Franklin O, Högberg MN (2017). Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. Forest Ecology and Management, 403, 161-185. |
[17] | Jager MM, Richardson SJ, Bellingham PJ, Clearwater MJ, Laughlin DC (2015). Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 103, 374-385. |
[18] | Jiang W, Cui SM, Li HX, Zhang YT, Bai HM (2017). Effects of salt stress on microstructure of roots, stems and leaves of pepper seedlings. Vegetables, 36(3), 6-15. |
[ 姜伟, 崔世茂, 李慧霞, 张轶婷, 白红梅 (2017). 盐胁迫对辣椒幼苗根、茎、叶显微结构的影响. 蔬菜, 36(3), 6-15.] | |
[19] | Kröber W, Heklau H, Bruelheide H (2015). Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biology, 17, 373-383. |
[20] | Li D, Kang S, Zhao MY, Zhang Q, Ren HJ, Ren J, Zhou JM, Wang Z, Wu RJ, Niu JM (2016). Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China. Chinese Journal of Plant Ecology, 40, 991-1002. |
[ 李丹, 康萨如拉, 赵梦颖, 张庆, 任海娟, 任婧, 周俊梅, 王珍, 吴仁吉, 牛建明 (2016). 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系. 植物生态学报, 40, 991-1002.] | |
[21] | Li FL, Bao WK (2005). Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 22(suppl.), 118-127. |
[ 李芳兰, 包维楷 (2005). 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 22(增刊), 118-127.] | |
[22] | Li Z, Zhao YJ, Song HY, Zhang J, Tao JP, Liu JC (2018). Effects of karst soil thickness heterogeneity on the leaf anatomical structure and photosynthetic traits of two grasses under different water treatments. Acta Ecologica Sinica, 38, 721-732. |
[ 李周, 赵雅洁, 宋海燕, 张静, 陶建平, 刘锦春 (2018). 不同水分处理下喀斯特土层厚度异质性对两种草本叶片解剖结构和光合特性的影响. 生态学报, 38, 721-732.] | |
[23] | Liu C, He N, Zhang J, Li Y, Wang Q, Sack L, Yu G (2018). Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Functional Ecology, 32, 20-28. |
[24] | Liu JK, Xu LG, Huang ZX, Wu YH, Shi Y, Sun YG, Bai HJ, Wang DH, Gao K, Ma XH (2018). Effects of planting density and nitrogen fertilization amount on tissue structure of middle leaves in flue-cured tobacco. Chinese Tobacco Science, 39(1), 24-37. |
[ 刘继坤, 徐立国, 黄择祥, 吴元华, 石屹, 孙延国, 白化军, 王大海, 高凯, 马兴华 (2018). 密度和施氮量互作对烤烟叶片组织结构的影响. 中国烟草科学, 39(1), 24-31.] | |
[25] | Liu MX, Ma JZ (2013). Feature variations of plant functional traits and environmental factor in south- and north-facing slope. Research of Soil and Water Conservation, 20(1), 102-106. |
[ 刘旻霞, 马建祖 (2013). 阴阳坡植物功能性状与环境因子的变化特征. 水土保持研究, 20(1), 102-106.] | |
[26] | Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, van Bodegom PM, Cornwell WK, Ellsworth D, Niinemets Ü, Ordonez A, Reich PB, Santiago LS (2015). Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24, 706-717. |
[27] | Meng N, Wei SH (2018). Uniconazole spraying ameliorates salt injury to soybean seedlings by regulating anatomical structure in roots. Chinese Journal of Ecology, 37, 3605-3609. |
[ 孟娜, 魏胜华 (2018). 喷施烯效唑调控大豆根部解剖结构缓解盐逆境伤害. 生态学杂志, 37, 3605-3609.] | |
[28] | National Soil Survey Office of China (1998). Soils of China. Chinese Agriculture Press, Beijing. |
[ 全国土壤普查办公室 (1998). 中国土壤. 中国农业出版社, 北京.] | |
[29] | Nicotra AB, Cosgrove MJ, Cowling A, Schlichting CD, Jones CS (2008). Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species. Oecologia, 154, 625-635. |
[30] | Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149. |
[31] | Paz RC, Reinoso H, Espasandin FD, González Antivilo FA, Sansberro PA, Rocco RA, Ruiz OA, Menéndez AB (2014). Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots. Plant Biology, 16, 1042-1049. |
[32] | Peng CZ, Chang LL, Yang Q, Tong Z, Wang D, Tan YH, Sun Y, Yi XP, Ding GH, Xiao JH, Zhang Y, Wang XC (2019). Comparative physiological and proteomic analyses of the chloroplasts in halophyte Sesuvium portulacastrum under differential salt conditions. Journal of Plant Physiology, 232, 141-150. |
[33] | Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275-301. |
[34] | Ren YY, Zhu YL, Zhang JT, Zhai XQ (2018). Effects of salinity on chlorophyll fluorescence characteristics and leaf anatomical structure of Robinia pseudoacacia L. cutting seedlings. Chinese Agricultural Science Bulletin, 34(18), 29-35. |
[ 任媛媛, 朱延林, 张江涛, 翟晓巧 (2018). 盐胁迫对刺槐幼苗叶绿素荧光及叶片解剖结构的影响. 中国农学通报, 34(18), 29-35.] | |
[35] | Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000. |
[36] | Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 3, 837. DOI: 10.1038/ ncomms1835. |
[37] | Schellberg J, Pontes LS (2012). Plant functional traits and nutrient gradients on grassland. Grass and Forage Science, 67, 305-319. |
[38] | Su L, Song TQ, Du H, Zeng FP, Wang H, Peng WX, Zhang F, Zhang JY (2018). Biomass and morphological characteristics of fine roots and their affecting factors in different vegetation restoration stages in depressions between karst hills. Chinese Journal of Applied Ecology, 29, 783-789. |
[ 苏樑, 宋同清, 杜虎, 曾馥平, 王华, 彭晚霞, 张芳, 张家涌 (2018). 喀斯特峰丛洼地不同植被恢复阶段细根生物量、形态特征及其影响因素. 应用生态学报, 29, 783-789.] | |
[39] | Sun HT, Jiang S, Liu JM, Guo YJ, Shen GS, Gu S (2016). Structure and ecological adaptability of the leaves of three asteraceae species at different altitudes on the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 36, 1559-1570. |
[ 孙会婷, 江莎, 刘婧敏, 郭亚娇, 沈广爽, 古松 (2016). 青藏高原不同海拔3种菊科植物叶片结构变化及其生态适应性. 生态学报, 36, 1559-1570.] | |
[40] | Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017). Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 355, 173-176. |
[41] | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485-496. |
[42] | Xin H, Zhang XF, Chu QG (1998). Comparative studies on the structures of leaves of maritime halophytes in Shandong. Acta Botanica Boreali-Occidentalia Sinica, 18, 584-589. |
[ 辛华, 张秀芬, 初庆刚 (1998). 山东滨海盐生植物叶结构的比较研究. 西北植物学报, 18, 584-589.] | |
[43] | Xu T, Zhao CZ, Han L, Feng W, Duan BB, Zheng HL (2017). Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland, China. Chinese Journal of Plant Ecology, 41, 761-769. |
[ 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲 (2017). 张掖湿地旱柳叶脉密度与水分利用效率的关系. 植物生态学报, 41, 761-769.] | |
[44] | Yan GY, Wang XC, Xing YJ, Han SJ, Wang QG (2016). Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China. Journal of Beijing Forestry University, 38(4), 36-43. |
[ 闫国永, 王晓春, 邢亚娟, 韩士杰, 王庆贵 (2016). 兴安落叶松林细根解剖结构和化学组分对N沉降的响应. 北京林业大学学报, 38(4), 36-43.] | |
[45] | Yu SH, Liu JT, Li ZX, Liu HT, Tan LM (2012). Mechanism of saline-alkali lands improvement of subsurface pipe drainage systems and agro-ecosystem response. Chinese Journal of Eco-Agriculture, 20, 1664-1672. |
[ 于淑会, 刘金铜, 李志祥, 刘慧涛, 谭莉梅 (2012). 暗管排水排盐改良盐碱地机理与农田生态系统响应研究进展. 中国生态农业学报, 20, 1664-1672.] | |
[46] | Zhang JE (2007). Commonly Used Experimental Research Methods and Techniques in Ecology. Chemical Industry Press, Beijing. |
[ 章家恩 (2007). 生态学常用实验研究方法与技术. 化学工业出版社, 北京.] | |
[47] | Zhang LY, Zhao GX (2006). Study on the effect of saline soil restoration material on physical and chemical properties of the coastal saline soil. Research of Soil and Water Conservation, 13(1), 32-34. |
[ 张凌云, 赵庚星 (2006). 盐碱土壤修复材料对滨海盐渍土理化性质的影响研究. 水土保持研究, 13(1), 32-34.] | |
[48] | Zhao KF (2002). Adaptation of plants to saline stress. Bulletin of Biology, 51(6), 7-10. |
[ 赵可夫 (2002). 植物对盐渍逆境的适应. 生物学通报, 51(6), 7-10.] | |
[49] | Zhong YM, Dong FY, Wang WJ, Wang JM, Li JW, Wu B, Jia XH (2017). Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats. Journal of Beijing Forestry University, 39(10), 53-61. |
[ 钟悦鸣, 董芳宇, 王文娟, 王健铭, 李景文, 吴波, 贾晓红 (2017). 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报, 39(10), 53-61.] | |
[50] | Zhu GL, Ma Y, Han L, Huo ZL, Wei XZ (2014). Current status of research on morphological structure, biological function and formation mechanism of plant crystals. Acta Ecologica Sinica, 34, 6429-6439. |
[ 朱广龙, 马茵, 韩蕾, 霍张丽, 魏学智 (2014). 植物晶体的形态结构、生物功能及形成机制研究进展. 生态学报, 34, 6429-6439.] |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[3] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[4] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[5] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[6] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[7] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[8] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[9] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[10] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[11] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[12] | 夏体泽, 李露双, 杨汉奇. 屏边空竹分布区海拔上下边界的土壤真菌群落特征[J]. 植物生态学报, 2022, 46(7): 823-833. |
[13] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[14] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[15] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19