植物生态学报 ›› 2014, Vol. 38 ›› Issue (3): 298-310.DOI: 10.3724/SP.J.1258.2014.00027
• • 上一篇
吴林坤1,2,*(), 林向民1,2,*, 林文雄1,2,**
收稿日期:
2013-10-09
接受日期:
2014-01-12
出版日期:
2014-10-09
发布日期:
2014-02-27
通讯作者:
吴林坤,林向民,林文雄
作者简介:
**E-mail: wenxiong181@163.com基金资助:
WU Lin-Kun1,2,*(), LIN Xiang-Min1,2,*, LIN Wen-Xiong1,2,**
Received:
2013-10-09
Accepted:
2014-01-12
Online:
2014-10-09
Published:
2014-02-27
Contact:
WU Lin-Kun,LIN Xiang-Min,LIN Wen-Xiong
摘要:
根系分泌物是植物与土壤进行物质交换和信息传递的重要载体物质, 是植物响应外界胁迫的重要途径, 是构成植物不同根际微生态特征的关键因素, 也是根际对话的主要调控者。根系分泌物对于生物地球化学循环、根际生态过程调控、植物生长发育等均具有重要功能, 尤其是在调控根际微生态系统结构与功能方面发挥着重要作用, 调节着植物-植物、植物-微生物、微生物-微生物间复杂的互作过程。植物化感作用、作物间套作、生物修复、生物入侵等都是现代农业生态学的研究热点, 它们都涉及十分复杂的根际生物学过程。越来越多的研究表明, 不论是同种植物还是不同种植物之间相互作用的正效应或是负效应, 都是由根系分泌物介导下的植物与特异微生物共同作用的结果。近年来, 随着现代生物技术的不断完善, 有关土壤这一“黑箱”的研究方法与技术取得了长足的进步, 尤其是各种宏组学技术(meta-omics technology), 如环境宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学等的问世, 极大地推进了人们对土壤生物世界的认知, 尤其是对植物地下部生物多样性和功能多样性的深层次剖析, 根际生物学特性的研究成果被广泛运用于指导生产实践。深入系统地研究根系分泌物介导下的植物-土壤-微生物的相互作用方式与机理, 对揭示土壤微生态系统功能、定向调控植物根际生物学过程、促进农业生产可持续发展等具有重要的指导意义。该文综述了根系分泌物的概念、组成及功能, 论述了根系分泌物介导下植物与细菌、真菌、土壤动物群之间的密切关系, 总结了探索根际生物学特性的各种研究技术及其优缺点, 并对该领域未来的研究方向进行了展望。
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310. DOI: 10.3724/SP.J.1258.2014.00027
WU Lin-Kun, LIN Xiang-Min, LIN Wen-Xiong. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. DOI: 10.3724/SP.J.1258.2014.00027
组成 Component | 物质 Substance |
---|---|
糖类 Sugar | 葡萄糖、果糖、核糖、蔗糖、木糖、鼠李糖、阿拉伯糖、寡糖、聚多糖 Glucose, fructose, ribose, sucrose, xylose, rhamnose, arabinose, oligosaccharide, polysaccharides |
氨基酸类 Amino acid | 精氨酸、赖氨酸、组氨酸、亮氨酸、天冬氨酸、谷氨酸、脯氨酸、苯丙氨酸 Arginine, lysine, histidine, leucine, aspartic acid, glutamic acid, proline, phenylalanine |
有机酸 Organic acid | 柠檬酸、草酸、苹果酸、酒石酸、乳酸、丙二酸、丙酮酸、丁酸 Citrate, oxalate, malate, tartaric acid, lactate, malonic acid, pyruvic acid, butyrate |
酚酸类 Phenolic | 对羟苯甲酸、香豆酸、丁香酸、香草酸、阿魏酸、肉桂酸 p-hydroxybenzoic acid, cumaric acid, syringic acid, vanillic acid, ferulic acid, cinnamic acid |
脂肪酸 Fatty acid | 油酸、亚麻酸、硬脂酸、软脂酸、棕榈酸 Oleic acid, linolenic acid, stearic acid, palmitic acid, palmitic acid |
甾醇类 Sterol | 油菜素甾醇、胆甾醇、谷甾醇、豆甾醇 Brassinosteroid, cholesterol, sitosterol, stigmasterol |
蛋白质 Protein | 过氧化物酶、半乳糖苷酶、磷酸水解酶、吲哚乙酸氧化酶、蛋白酶、多肽 Peroxidase, galactosidase, phosphohydrolase, IAA oxidase, protease, polypeptide |
生长因子 Growth factor | 生物素、泛酸、胆碱、肌醇、硫胺素、尼克酸、维生素B6 Biotin, pantothenic acid, choline, inositol, thiamine, nicotinic acid, vitamin B6 |
其他 Others | CO2、乙烯、质子、核苷、黄酮类化合物、植物生长素、植物抗毒素 CO2, ethylene, proton, nucleoside, flavonoid, auximone, phytoalexin |
表1 根系分泌物的组成
Table 1 Components of plant root exudates
组成 Component | 物质 Substance |
---|---|
糖类 Sugar | 葡萄糖、果糖、核糖、蔗糖、木糖、鼠李糖、阿拉伯糖、寡糖、聚多糖 Glucose, fructose, ribose, sucrose, xylose, rhamnose, arabinose, oligosaccharide, polysaccharides |
氨基酸类 Amino acid | 精氨酸、赖氨酸、组氨酸、亮氨酸、天冬氨酸、谷氨酸、脯氨酸、苯丙氨酸 Arginine, lysine, histidine, leucine, aspartic acid, glutamic acid, proline, phenylalanine |
有机酸 Organic acid | 柠檬酸、草酸、苹果酸、酒石酸、乳酸、丙二酸、丙酮酸、丁酸 Citrate, oxalate, malate, tartaric acid, lactate, malonic acid, pyruvic acid, butyrate |
酚酸类 Phenolic | 对羟苯甲酸、香豆酸、丁香酸、香草酸、阿魏酸、肉桂酸 p-hydroxybenzoic acid, cumaric acid, syringic acid, vanillic acid, ferulic acid, cinnamic acid |
脂肪酸 Fatty acid | 油酸、亚麻酸、硬脂酸、软脂酸、棕榈酸 Oleic acid, linolenic acid, stearic acid, palmitic acid, palmitic acid |
甾醇类 Sterol | 油菜素甾醇、胆甾醇、谷甾醇、豆甾醇 Brassinosteroid, cholesterol, sitosterol, stigmasterol |
蛋白质 Protein | 过氧化物酶、半乳糖苷酶、磷酸水解酶、吲哚乙酸氧化酶、蛋白酶、多肽 Peroxidase, galactosidase, phosphohydrolase, IAA oxidase, protease, polypeptide |
生长因子 Growth factor | 生物素、泛酸、胆碱、肌醇、硫胺素、尼克酸、维生素B6 Biotin, pantothenic acid, choline, inositol, thiamine, nicotinic acid, vitamin B6 |
其他 Others | CO2、乙烯、质子、核苷、黄酮类化合物、植物生长素、植物抗毒素 CO2, ethylene, proton, nucleoside, flavonoid, auximone, phytoalexin |
功能 Function ( | 组成 Compound |
---|---|
营养功能 Nutritional function | |
为微生物生长提供碳、氮源 Available sources of carbon and nitrogen for microbes | 低分子量糖类、氨基酸、羧酸类 Low molecular weight sugar, amino acid, carboxylic acid |
植物营养吸收 Plant nutrient acquisition | |
通过金属螯合提高对P、Fe、Zn、Mn的吸收 Mobilization of P, Fe, Zn and Mn, by metal chelation | 柠檬酸、草酸、苹果酸、酒石酸、植物铁载体 Citrate, oxalate, malate, malonate, tartaric acid, phytosiderophore |
通过还原作用提高对Fe、Mn的吸收 Mobilization of Fe and Mn, by contact reduction | 酚类、苹果酸、柠檬酸 Phenolic, malate, citrate |
回收利用有机磷酯类中的P元素 Mobilization and retrieval of P from organic P esters | 根细胞分泌磷酸水解酶 Root-secretory phosphohydrolase |
吸引固氮菌 Chemoattraction of N2-fixing microbes | 类黄酮、苹果酸、植物黏液 Flavonoid, malate, mucilage |
诱导共生固氮菌表达Nod基因和抗性相关基因以抵御植物抗毒素 Nod-gene inducers and resistance-inducers against phytoalexins in symbiotic N2 fixation | 黄酮类、黄烷酮(衍生物)、异黄酮 Flavone, flavanone, isoflavone |
诱导形成菌根的信号物质 Signal functions in establishment of mycorrhizal associations | 类黄酮、糖、氨基酸 Flavonoid, sugar, amino acid |
为菌根真菌提高碳源 Available carbon source for mycorrhizal fungi | 转化酶 Invertase |
保护功能 Protective function | |
通过络合缓解铝毒 Detoxification of Al3+ by complexation | 柠檬酸、草酸、苹果酸、酚类、植物黏液、分泌蛋白 Citrate, oxalate, malate, phenolic, mucilage, secretory protein |
响应重碳酸盐毒胁迫 In response to bicarbonate toxicity | 苹果酸、柠檬酸 Malate, citrate |
保护根部分裂组织, 提高根部与土壤的接触, 提高土壤保水能力 Protection of the root meristem, improved root-soil contact, increased water-holding capacity | 植物黏液 Mucilage |
植物抗毒素, 抵御病原菌、寄生植物、竞争者 Phytoalexin, defense against of pathogens, parasites and competitors | 苯醌、氢化奎宁、皂角苷、几丁质酶、根边缘细胞 Quinone, hydroquinine, saponin, chitinase, root border cell |
表2 根系分泌物的功能
Table 2 Reported functions of plant root exudates
功能 Function ( | 组成 Compound |
---|---|
营养功能 Nutritional function | |
为微生物生长提供碳、氮源 Available sources of carbon and nitrogen for microbes | 低分子量糖类、氨基酸、羧酸类 Low molecular weight sugar, amino acid, carboxylic acid |
植物营养吸收 Plant nutrient acquisition | |
通过金属螯合提高对P、Fe、Zn、Mn的吸收 Mobilization of P, Fe, Zn and Mn, by metal chelation | 柠檬酸、草酸、苹果酸、酒石酸、植物铁载体 Citrate, oxalate, malate, malonate, tartaric acid, phytosiderophore |
通过还原作用提高对Fe、Mn的吸收 Mobilization of Fe and Mn, by contact reduction | 酚类、苹果酸、柠檬酸 Phenolic, malate, citrate |
回收利用有机磷酯类中的P元素 Mobilization and retrieval of P from organic P esters | 根细胞分泌磷酸水解酶 Root-secretory phosphohydrolase |
吸引固氮菌 Chemoattraction of N2-fixing microbes | 类黄酮、苹果酸、植物黏液 Flavonoid, malate, mucilage |
诱导共生固氮菌表达Nod基因和抗性相关基因以抵御植物抗毒素 Nod-gene inducers and resistance-inducers against phytoalexins in symbiotic N2 fixation | 黄酮类、黄烷酮(衍生物)、异黄酮 Flavone, flavanone, isoflavone |
诱导形成菌根的信号物质 Signal functions in establishment of mycorrhizal associations | 类黄酮、糖、氨基酸 Flavonoid, sugar, amino acid |
为菌根真菌提高碳源 Available carbon source for mycorrhizal fungi | 转化酶 Invertase |
保护功能 Protective function | |
通过络合缓解铝毒 Detoxification of Al3+ by complexation | 柠檬酸、草酸、苹果酸、酚类、植物黏液、分泌蛋白 Citrate, oxalate, malate, phenolic, mucilage, secretory protein |
响应重碳酸盐毒胁迫 In response to bicarbonate toxicity | 苹果酸、柠檬酸 Malate, citrate |
保护根部分裂组织, 提高根部与土壤的接触, 提高土壤保水能力 Protection of the root meristem, improved root-soil contact, increased water-holding capacity | 植物黏液 Mucilage |
植物抗毒素, 抵御病原菌、寄生植物、竞争者 Phytoalexin, defense against of pathogens, parasites and competitors | 苯醌、氢化奎宁、皂角苷、几丁质酶、根边缘细胞 Quinone, hydroquinine, saponin, chitinase, root border cell |
图1 革兰氏阴性菌(A)和革兰氏阳性菌(B)群体效应机制模型。AI, 自诱导剂; luxI, 自诱导剂合成蛋白; luxR, 自诱导剂受体蛋白。
Fig. 1 A mechanistic model for quorum-sensing of gram-negative bacteria (A) and gram-positive bacteria (B). AI, autoinducer; luxI, autoinducer synthesis protein; luxR, autoinducer receptor protein.
[1] |
Akiyama K, Matsuzaki KI, Hayashi H (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824-827.
DOI URL |
[2] | Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013). Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist, 198, 264-273. |
[3] | Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002a). Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiology and Biochemistry, 40, 983-995. |
[4] |
Bais HP, Park SW, Stermitz FR, Halligan KM, Vivanco JM (2002b). Exudation of fluorescent β-carbolines from Oxalis tuberosa L. roots. Phytochemistry, 61, 539-543.
DOI URL |
[5] | Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301, 1377-1380. |
[6] | Bardgett RD (2005a). The diversity of life in soil. In: Bardgett RD ed. The Biology of Soil. A Community and Ecosystem Approach. Oxford University Press, New York. 24-57. |
[7] | Bardgett RD (2005b). Linkages between plant and soil biological communities. In: Bardgett RD ed. The Biology of Soil. A Community and Ecosystem Approach. Oxford University Press, New York. 86-119. |
[8] | Berendsen RL, Pieterse CM, Bakker PA (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486. |
[9] | Buee M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000). The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Molecular Plant-Microbe Interac- tions, 13, 693-698. |
[10] | Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots . Plant Physiology, 130, 1951-1957. |
[11] | Chang XX, Duan CQ, Wang HX (2000). Root excretion and plant resistance to metal toxicity. Chinese Journal of Applied Ecology, 11, 315-320. (in Chinese with English abstract) |
[ 常学秀, 段昌群, 王焕校 (2000). 根分泌作用与植物对金属毒害的抗性. 应用生态学报, 11, 315-320.] | |
[12] | Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013). Root exudation of phytochem- icals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE, 8, e55731. |
[13] | Chen DM, Ke WH, Chen LL, Huang JW, Wu WX, Chen T, Zhang ZY, Lin WX (2010). Diversity of bacterial community in rhizosphere soils under effects of continuously planting burley tobacco. Chinese Journal of Applied Ecology, 21, 1751-1758. (in Chinese with English abstract) |
[ 陈冬梅, 柯文辉, 陈兰兰, 黄锦文, 吴文祥, 陈婷, 张重义, 林文雄 (2010). 连作对白肋烟根际土壤细菌群落多样性的影响. 应用生态学报, 21, 1751-1758.] | |
[14] | Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J, Khmel I, Vainstein A (2011). Quorum-sensing quenching by rhizobacterial volatiles. Environment Microbiology Reports, 3, 698-704. |
[15] | Dinkelaker B, Römheld V, Marschner H (1989). Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L). Plant, Cell & Environment, 12, 285-292. |
[16] | East R (2013). Microbiome: soil science comes to life. Nature, 501, S18-S19. |
[17] | Eisenhauer N, Scheu S, Jousset A (2012). Bacterial diversity stabilizes community productivity. PLoS ONE, 7, e34517. |
[18] | Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 109, 21390-21395. |
[19] | Fray RG (2002). Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Annals of Botany, 89, 245-253. |
[20] | Gregory PJ (2007). The rhizosphere. In: Gregory PJ ed. Plant Roots: Growth, Activity and Interactions with the Soil. . Blackwell Publishing, Oxford. 216-252. |
[21] | Gschwendtner S, Esperschütz J, Buegger F, Reichmann M, Müller M, Munch JC, Schloter M (2011). Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates. FEMS Microbiology Ecology, 76, 564-575. |
[22] | Hajiboland R, Yang XE, Römheld V (2003). Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice, wheat and rye. Plant and Soil, 250, 349-357. |
[23] |
He HB, Chen XX, Lin RY, Lin WX, He HQ, Jia XL, Xiong J, Shen LH, Liang YY (2005). Chemical components of root exudates from allelopathic rice accession PI312777 seedlings. Chinese Journal of Applied Ecology, 16, 2383-2388. (in Chinese with English abstract)
URL PMID |
[ 何海斌, 陈祥旭, 林瑞余, 林文雄, 何华勤, 贾小丽, 熊君, 沈荔花, 梁义元 (2005). 化感水稻P1312777苗期根系分泌物中化学成分分析. 应用生态学报, 16, 2383-2388.]
PMID |
|
[24] | He YH, Shen DS, Zhu YM (2006). Root exudates and their rhizospheric effects. Bulletin of Science and Technology, 22, 761-766. (in Chinese with English abstract) |
[ 贺永华, 沈东升, 朱荫湄 (2006). 根系分泌物及其根际效应. 科技通报, 22, 761-766.] | |
[25] | Johnson NC, Graham JH, Smith FA (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 135, 575-585. |
[26] |
Kato-Noguchi H (2009). Stress-induced allelopathic activity and momilactone B in rice. Plant Growth Regulation, 59, 153-158.
DOI URL |
[27] | Kaur H, Kaur R, Kaur S, Baldwin IT, Inderjit (2009). Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. PLoS ONE, 3, e4700. |
[28] | Kuzyakov Y, Domanski G (2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163, 421-431. |
[29] | Lakshmanan V, Kitto SL, Caplan JL, Hsueh YH, Kearns DB, Wu YS, Bais HP (2012). Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiology, 160, 1642-1661. |
[30] | Lanfranco L, Young JP (2012). Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi. Current Opinion in Plant Biology, 15, 454-461. |
[31] | Larson RA, Marley KA, Tuveson RW, Berenbaum MR (1988). β-Carboline alkaloids: mechanisms of phototoxicity to bacteria and insects. Photochemistry and Photobiology, 48, 665-674. |
[32] | Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104, 11192-11196. |
[33] | Li YZ (2013). Dynamic Changes of Phenolic Acids and Its Effects on Specific Microorganisms in Rice Rhizosphere Soil. Master Degree dissertation, Fujian Agriculture and Forestry University, Fuzhou. 29-39. |
(in Chinese). [ 李颖哲 (2013). 水稻酚酸类化感物质的动态变化及其对根际特定微生物的影响. 硕士学位论文, 福建农林大学, 福州. 29-39.] | |
[34] | Lin HF (2011). Analysis on Function Microorganism in the Rhizosphere of Allelopathic Rice Under Different Water Conditions. Master Degree dissertation, Fujian Agriculture and Forestry University, Fuzhou. 14-27. |
(in Chinese). [ 林辉锋 (2011). 不同水分条件下化感水稻根际功能微生物研究. 硕士学位论文, 福建农林大学, 福州. 14-27.] | |
[35] | Lin MZ, Wang HB, Lin HF (2012). Effects of Pseudostellariae heterophylla continuous cropping on rhizosphere soil microorganisms. Chinese Journal of Ecology, 31, 106-111. (in Chinese with English abstract) |
[ 林茂兹, 王海斌, 林辉锋 (2012). 太子参连作对根际土壤微生物的影响. 生态学杂志, 31, 106-111.] | |
[36] |
Lin RY, Rong H, Zhou JJ, Yu CP, Ye CY, Chen LS, Lin WX (2007). Impact of rice seedling allelopathy on rhizospheric microbial populations and their functional diversities. Acta Ecologica Sinica, 27, 3644-3654. (in Chinese with English abstract)
DOI URL |
[ 林瑞余, 戎红, 周军建, 于翠平, 叶陈英, 陈良生, 林文雄 (2007). 苗期化感水稻对根际土壤微生物群落及其功能多样性的影响. 生态学报, 27, 3644-3654.] | |
[37] | Lin WX, Wu LK, Lin S, Zhang AJ, Zhou MM, Lin R, Wang HB, Chen J, Zhang ZX, Lin RY (2013). Metaproteomic analysis of ratoon sugarcane rhizospheric soil. BMC Microbiology, 13, 135. |
[38] | Lin WX, Xiong J, Zhou JJ, Qiu L, Shen LH, Li ZF, Chen H, Hao HR, Chen T, Lin RY, He HB, Liang YY (2007). Research status and its perspective on the properties of rhizosphere biology mediated by allelopathic plants. Chinese Journal of Eco-Agriculture, 15(4), 1-8. (in Chinese with English abstract) |
[ 林文雄, 熊君, 周军建, 邱龙, 沈荔花, 李振方, 陈慧, 郝慧荣, 陈婷, 林瑞余, 何海斌, 梁义元 (2007). 化感植物根际生物学特性研究现状与展望. 中国生态农业学报, 15(4), 1-8.] | |
[39] | Liu WJ, Zhang XK, Zhang FS (2000). The mobilization of root exudates on CdS in rice rhizosphere and their effect on Cd uptake and transport. Acta Ecologica Sinica, 20, 448-451. (in Chinese with English abstract) |
[ 刘文菊, 张西科, 张福锁 (2000). 根分泌物对根际难溶性镉的活化作用及对水稻吸收、运输镉的影响. 生态学报, 20, 448-451.] | |
[40] | Ma AZ, Lü D, Zhuang XL, Zhuang GQ (2013). Quorum quenching in culturable phyllosphere bacteria from tobacco. International Journal of Molecular Sciences, 14, 14607-14619. |
[41] | Marschner H (1995). Mineral Nutrition of Higher Plants. 2nd edn. Academic Press, . London. |
[42] | Materechera SA, Dexter AR, Alston AM (1992). Formation of aggregates by plant roots in homogenised soils. Plant and Soil, 142, 69-79. |
[43] | Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097-1100. |
[44] | Neumann G (2011). Root exudates and nutrient cycling. In: Marschner P, Rengel Z eds. Nutrient Cycling in Terrestrial Ecosystems. Springer-Verlag, Heidelberg,. 123-157. |
[45] |
Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Romheld V, Martinoia E (2000). Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Annals of Botany, 85, 909-919.
DOI URL |
[46] | Neumann G, Römheld V (2000). The release of root exudates as affected by the plant physiological status In: Pinton R, Varanini Z, Nannipieri Z eds. The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. Dekker, New York. 41-89. |
[47] | Nielsen K, Boston RS (2001). Ribosome-inactivating proteins: a plant perspective. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 785-816. |
[48] | Oades JM (1978). Mucilages at the root surface. Journal of Soil Science, 29, 1-16. |
[49] | Park SW, Lawrence CB, Linden JC, Vivanco JM (2002a). Iso- lation and characterization of a novel ribosome-inactivat- ing protein from root cultures of pokeweed and its mechanism of secretion from roots. Plant Physiology, 130, 164-178. |
[50] | Park SW, Stevens NM, Vivanco JM (200b). Enzymatic specificity of three ribosome-inactivating proteins against fungal ribosomes, and correlation with antifungal activity. Planta, 216, 227-234. |
[51] | Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007). Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist, 173, 600-610. |
[52] | Peters NK, Frost JW, Long SR (1986). A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science, 233, 977-980. |
[53] | Pierre-Alain M, Christophe M, Severine S, Houria A, Philippe L, Lionel R (2007). Protein extraction and fingerprinting optimization of bacterial communities in natural environment. Microbial Ecology, 53, 426-434. |
[54] |
Pramanik MHR, Nagai M, Asao T, Matsui Y (2000). Effects of temperature and photoperiod on the phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. Journal of Chemical Ecology, 28, 1953-1967.
DOI URL |
[55] | Qi JJ, Yao HY, Ma XJ, Zhou LL, Li XN (2009). Soil microbial community composition and diversity in the rhizosphere of a Chinese medicinal plant. Communications in Soil Science and Plant Analysis, 40, 1462-1482. |
[56] |
Ronald PC, Shirasu K (2012). Front-runners in plant-microbe interactions. Current Opinion in Plant Biology, 15, 345-348.
DOI URL |
[57] | Shi GR (2004). Ecological effects of plant root exudates. Chinese Journal of Ecology, 23, 97-101. (in Chinese with English abstract) |
[ 史刚荣 (2004). 植物根系分泌物的生态效应. 生态学杂志, 23, 97-101.] | |
[58] | Singh G, Mukerji KG (2006). Root exudates as determinant of rhizospheric microbial biodiversity. In: Mukerji KG, Manoharachary C, Singh J eds. Microbial Activity in the Rhizosphere. Springer, Berlin. 39-53. |
[59] | Soloducho J, Cabaj J (2013). Phenolic compounds hybrid de-tectors. Journal of Biomaterials and Nanobiotechnology, 4, 17-27. |
[60] |
Takagi S, Nomoto K, Takemoto T (1984). Physiological aspect of mugineic acid, a possible phytosiderophore of gramin- aceous plants. Journal of Plant Nutrition, 7, 469-477.
DOI URL |
[61] |
Tang CS, Young CC (1982). Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss (Hemarthria altissima). Plant Physiology, 69, 155-160.
DOI URL |
[62] | Tu SX, Sun JH, Guo ZF, Gu F (2000). On relationship between root exudates and plant nutrition in rhizosphere. Soil and Environmental Sciences, 9, 64-67. (in Chinese with English abstract) |
[ 涂书新, 孙锦荷, 郭智芬, 谷峰 (2000). 植物根系分泌物与根际营养关系评述. 土壤与环境, 9, 64-67.] | |
[63] |
Vepachedu R, Bais HP, Vivanco JM (2003). Molecular characterization and post-transcriptional regulation of ME1, a type-I ribosome-inactivating protein from Mirabilis expansa. Planta, 217, 498-506.
DOI URL |
[64] |
von Bodman SB, Bauer WD, Coplin DL (2003). Quorum sensing in plant-pathogenic bacteria. Annual Review of Phytopathology, 41, 455-482.
DOI URL |
[65] |
Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004). Pseudomonas aeruginosa-plant root interactions: pathogenicity, biofilm formation, and root exudation. . Plant Physiology, 134, 320-331.
DOI URL |
[66] | Walker TS, Bais HP, Grotewold E, Vivanco JM (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 144-151. |
[67] |
Wang HB, Zhang ZX, Li H, He HB, Fang CX, Zhang AJ, Li QS, Chen RS, Guo XK, Lin HF, Wu LK, Lin S, Chen T, Lin RY, Peng XX, Lin WX (2011). Characterization of metaproteomics in crop rhizospheric soil. Journal of Proteome Research, 10, 932-940.
DOI URL |
[68] |
Wasaki J, Rothe A, Kania A, Neumann, Shinano T, Osaki M, Kandeler E (2005). Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration. Journal of Environmental Quality, 34, 2157-2166.
DOI URL |
[70] | Werner D (2000). Organic signals between plants and microor- ganisms. . In: Pinton R, Varanini Z, Nannipieri Z eds. The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. Dekker, New York. 197-222. |
[71] |
Wu HW, Haig T, Pratley J, Lemerle D, An M (2001). Allelochemicals in Wheat (Triticum aestivum L.): cultivar difference in the exudation of phenolic acids. Journal of Agricultural and Food Chemistry, 49, 3742-3745.
DOI URL |
[72] |
Wu LK, Wang HB, Zhang ZX, Lin R, Zhong ZY, Lin WX (2011). Comparative metaproteomic analysis on consecu- tively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS ONE, 6, e20611.
DOI URL |
[73] | Wu T, Wittkamper J, Flores HE (1999). Root herbivory in vitro: interactions between roots and aphids grown in aseptic coculture. In Vitro Cellular & Developmental Biology―Plant, 35, 259-264. |
[74] |
Yu JQ, Matsui Y (1994). Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). Journal of Chemical Ecology, 20, 21-31.
DOI URL |
[75] | Zhang ZY, Chen H, Yang YH, Chen T, Lin RY, Chen XJ, Lin WX (2010). Effects of continuous cropping on bacterial community diversity in rhizosphere soil of Rehmannia glutinosa. Chinese Journal of Applied Ecology, 21, 2843-2848. (in Chinese with English abstract) |
[ 张重义, 陈慧, 杨艳会, 陈婷, 林瑞余, 陈新建, 林文雄 (2010). 连作对地黄根际土壤细菌群落多样性的影响. 应用生态学报, 21, 2843-2848.] | |
[76] |
Zhang ZY, Lin WX (2009). Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Chinese Journal of Eco-Agriculture, 17, 189-196. (in Chinese with English abstract)
DOI URL |
[ 张重义, 林文雄 (2009). 药用植物的化感自毒作用与连作障碍. 中国生态农业学报, 17, 189-196.] | |
[77] |
Zhou X, Wu F (2012). P-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f. sp. cucumerinum Owen. . PLoS ONE, 7, e48288.
DOI URL |
[78] |
Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013). Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Applied Soil Ecology, 68, 1-9.
DOI URL |
[79] | Zwart KB Kuikman PJ van Veen JA, (1994). Rhizosphere protozoa: their significance in nutrient dynamics. In: Darbyshire JF ed. Soil Protozoa. CAB International, Wallingford, USA. 93-121. |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[4] | 张仲富, 王四海, 杨卫, 陈剑. 蒜头果根际细菌群落结构与功能特征对其健康状态的响应[J]. 植物生态学报, 2023, 47(7): 1020-1031. |
[5] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[6] | 李柳, 刘庆华, 尹春英. 植物硒生物强化及微生物在其中的应用潜力[J]. 植物生态学报, 2023, 47(6): 756-769. |
[7] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[8] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[9] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[10] | 李强, 黄迎新, 周道玮, 丛山. 土壤氮磷添加下豆科草本植物生物固氮与磷获取策略的权衡机制[J]. 植物生态学报, 2021, 45(3): 286-297. |
[11] | 胡琪娟, 盛茂银, 殷婕, 白义鑫. 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征[J]. 植物生态学报, 2020, 44(9): 962-972. |
[12] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
[13] | 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征[J]. 植物生态学报, 2020, 44(12): 1285-1295. |
[14] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
[15] | 闫雅楠, 叶小齐, 吴明, 闫明, 张昕丽. 入侵植物加拿大一枝黄花根际解钾菌多样性及解钾活性[J]. 植物生态学报, 2019, 43(6): 543-556. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19