植物生态学报 ›› 2016, Vol. 40 ›› Issue (1): 36-47.DOI: 10.17521/cjpe.2015.0164
所属专题: 植物功能性状
詹书侠1,2, 郑淑霞1, 王扬1,2, 白永飞1,*
出版日期:
2016-01-01
发布日期:
2016-01-28
通讯作者:
白永飞
作者简介:
# 共同第一作者
基金资助:
ZHAN Shu-Xia1,2, ZHENG Shu-Xia1, WANG Yang1,2, BAI Yong-Fei1,*
Online:
2016-01-01
Published:
2016-01-28
Contact:
Yong-Fei BAI
About author:
# Co-first authors
摘要:
羊草(Leymus chinensis)是我国北方典型草原群落的主要建群种和优势种, 由于长期的过度放牧, 羊草草原生态系统的结构和功能严重退化。养分添加作为恢复草地生态系统的一种管理措施, 其应用目前还处于实验性研究阶段。关于羊草的地上-地下功能性状对养分添加, 尤其是P添加的响应研究较少, 相关机制尚不十分清楚。为此, 该文以羊草为研究对象, 通过温室栽培进行N (50, 100, 250 mg N·kg-1)和P (5, 10, 25 mg P·kg-1)各3个水平的养分添加实验, 研究羊草的地上-地下功能性状对N、P添加的响应及适应机制。主要研究结果表明: 1)羊草的地上生物量和总生物量主要受N添加的影响, N添加显著提高了羊草的地上生物量, 而地下生物量主要受P添加的影响, 尤其在中N和高N水平, P添加显著降低了羊草的地下生物量。羊草的根冠比受N、P添加的共同影响, 随着N、P添加梯度加大, 根冠比显著降低, N、P添加促进了羊草生物量向地上部分的分配和N、P向叶片的分配。2)在低N和高N水平, 羊草对P添加的响应与适应机制不同。低N水平, 羊草主要通过增加光合速率和比根长(SRL), 提高光合能力和根系对N的获取能力促进地上部分的生长, 而根系对P的吸收有利于地下部分的生长; 在高N水平, P添加对羊草的个体生长无明显促进作用, 甚至地下生物量明显受到P素抑制, 羊草主要通过保持较高的比叶面积(SLA)和SRL, 提高对光资源的截获能力和根系对N的获取和吸收能力, 维持地上部分的生长。3)相对于地上性状, P添加对羊草的地下性状影响更大, 羊草的SLA与SRL呈较弱的正相关关系, 表明叶片与根系在资源获取和利用方面具有相对独立性。
詹书侠, 郑淑霞, 王扬, 白永飞. 羊草的地上-地下功能性状对氮磷施肥梯度的响应及关联. 植物生态学报, 2016, 40(1): 36-47. DOI: 10.17521/cjpe.2015.0164
ZHAN Shu-Xia, ZHENG Shu-Xia, WANG Yang, BAI Yong-Fei. Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions. Chinese Journal of Plant Ecology, 2016, 40(1): 36-47. DOI: 10.17521/cjpe.2015.0164
图1 氮、磷添加对羊草个体的地上生物量(A)、地下生物量(B)、总生物量(C)和根冠比(D)的影响(平均值±标准误差)。不同字母代表在相同N添加水平下, 不同P添加处理之间差异显著(p < 0.05), p值为显著性水平, ns表示P处理间差异不显著。N0P0, 对照; N1、N2、N3分别表示低、中、高N水平; P1、P2、P3分别表示低、中、高P水平。
Fig. 1 Effects of N and P additions on individual aboveground biomass (A), belowground biomass (B), total biomass (C), and root: shoot ratio (D) of Leymus chinensis (mean ± SE). Different letters indicate significant difference (p < 0.05) among different P treatments at the same N level. p values indicate significant levels, and ns indicates non-significant difference among P treatments. N0P0, control; N1, N2, N3 represent low, moderate and high N levels, and P1, P2, P3 represent low, moderate and high P levels.
图2 氮、磷添加对羊草叶片与根系生物量N、P分配(A, B)的影响(平均值±标准误差)。生物量N、P分配分别为叶片与根系总N、P质量之比。不同字母代表在相同N添加水平下, 不同P添加处理之间差异显著(p < 0.05), p值为显著性水平, ns表示P处理间差异不显著。N0P0, 对照; N1、N2、N3分别表示低、中、高N水平; P1、P2、P3分别表示低、中、高P水平。
Fig. 2 Effects of N and P additions on N (A) and P (B) allocation between leaf and root biomass of Leymus chinensis (mean ± SE). N allocation is calculated as the ratio of leaf N biomass to root N biomass, and P allocation is the ratio of leaf P biomass to root P biomass. Different letters indicate significant difference (p < 0.05) among different P treatments at the same N level. p values indicate significant levels, and ns indicates non-significant difference among P treatments. N0P0, control; N1, N2, N3 represent low, moderate and high N levels, and P1, P2, P3 represent low, moderate and high P levels.
图3 氮、磷添加对羊草叶片(A)和根系(B) N、P含量及N:P比的影响(平均值±标准误差)。不同小写字母代表在相同N添加水平下, 不同P添加处理间差异显著(p < 0.05), P值为显著性水平, ns表示P处理间差异不显著。N0P0, 对照; N1、N2、N3分别表示低、中、高N水平; P1、P2、P3分别表示低、中、高P水平。
Fig. 3 Effects of N and P additions on leaf (A) and root (B) N, P, and N:P ratios of Leymus chinensis (mean ± SE). Different letters indicate significant difference (p < 0.05) among different P treatments at the same N level. P values indicate significant levels, and ns indicates non-significant difference among P treatments. N0P0, control; N1, N2, N3 represent low, moderate and high N levels, and P1, P2, P3 represent low, moderate and high P levels.
图4 氮、磷添加对羊草的比叶面积(A)和比根长(B)影响(平均值±标准误差)。不同字母代表在相同N添加水平下, 不同P添加处理之间差异显著(p < 0.05), p值为显著性水平, ns表示P处理间差异不显著。N0P0, 对照; N1, N2, N3分别表示低、中、高N水平; P1, P2, P3分别表示低、中、高P水平。
Fig. 4 Effects of N and P additions on specific leaf area (A) and specific root length (B) of Leymus chinensis (mean ± SE). Different letters indicate significant difference (p < 0.05) among different P treatments at the same N level. p values indicate significant levels, and ns indicates non-significant difference among P treatments. N0P0, control; N1, N2, N3 represent low, moderate and high N levels, and P1, P2, P3 represent low, moderate and high P levels.
图5 羊草个体地上与地下生物量(A)、比叶面积与比根长(B)、叶片与根系N、P含量(C、D)之间的关系。
Fig. 5 Relationships between individual aboveground and belowground biomass (A), specific leaf area and specific root length (B), leaf N and root N contents (C), leaf P and root P contents (D) of Leymus chinensis.
1 | Bai X, Cheng JH, Zheng SX, Zhan SX, Bai YF (2014). Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe.Chinese Journal of Plant Ecology, 38, 103-115. (in Chinese with English abstract) |
[白雪, 程军回, 郑淑霞, 詹书侠, 白永飞 (2014). 典型草原建群种羊草对氮磷添加的生理生态响应. 植物生态学报, 38, 103-115.] | |
2 | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands.Global Change Biology, 16, 358-372. |
3 | Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China.Environmental and Experimental Botany, 53, 65-75. |
4 | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51, 335-380. |
5 | Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs.Nature, 408, 578-580. |
6 | Hart MM, Reader RJ, Klironomos JN (2003). Plant coexistence mediated by arbuscular mycorrhizal fungi.Trends in Ecology & Evolution, 18, 418-423. |
7 | Huang JY, Xu P, Yu HL, Yuan ZY, Li LH (2012). Responses of biomass, nutrient allocation of Leymus chinensis along N, P and water gradients.Pratacultural Science, 29, 1589-1595. (in Chinese with English abstract) |
[黄菊莹, 徐鹏, 余海龙, 袁志友, 李凌浩 (2012). 羊草生物量和养分分配对养分和水分添加的响应. 草业科学, 29, 1589-1595.] | |
8 | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450. |
9 | Lan ZC, Bai YF (2012). Testing mechanisms of N-enrichment- induced species loss in a semiarid Inner Mongolia grassland: Critical thresholds and implications for long-term ecosystem responses.Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3125-3134. |
10 | Lapointe BE (1987). Phosphorus-and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: An experimental field study.Marine Biology, 93, 561-568. |
11 | Lavorel S, Grigulis K (2012). How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services.Journal of Ecology, 100, 128-140. |
12 | Lei Y, Hao ZP, Chen BD (2013). Effects of indigenous AM fungi and neighboring plants on the growth and phosphorus nutrition of Leymus chinensis.Acta Ecologica Sinica, 33, 1071-1079. (in Chinese with English abstract) |
[雷垚, 郝志鹏, 陈保冬 (2013). 土著菌根真菌和混生植物对羊草生长和磷营养的影响. 生态学报, 33, 1071-1079.] | |
13 | Li XL, Feng G (2001). Eco-Physiology of Arbuscular Mycorrhiza. Sino-Culture Press, Beijing. 178-199. |
14 | Li YH (1993). Grazing dynamics of the species diversity in Aneurolepidium chinense steppe and Stipa grandis steppe.Acta Botanica Sinica, 35, 877-884. (in Chinese with English abstract) |
[李永宏 (1993). 放牧影响下羊草草原和大针茅草原植物多样性的变化. 植物学报, 35, 877-884.] | |
15 | Liu GF, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010). Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems.New Phytologist, 188, 543-553. |
16 | Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013). Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland.Global Change Biology, 19, 2775-2784. |
17 | Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems.New Phytologist, 193, 696-704. |
18 | Müller I, Schmid B, Weiner J (2000). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants.Perspectives in Plant Ecology, Evolution and Systematics, 3, 115-127. |
19 | Pan QM, Bai YF, Han XG, Yang JC (2005). Effects of nitrogen additions on a Leymus chinensis population in typical steppe of Inner Mongolia.Acta Phytoecologica Sinica, 29, 311-317. (in Chinese with English abstract) |
[潘庆民, 白永飞, 韩兴国, 杨景成 (2005). 氮素对内蒙古典型草原羊草种群的影响. 植物生态学报, 29, 311-317.] | |
20 | Pan QM, Bai YF, Wu JG, Han XG (2011). Hierarchical plant responses and diversity loss after nitrogen addition: Testing three functionally-based hypotheses in the Inner Mongolia grassland.PLoS ONE, 6, e20078. doi: 10.1371/jour- nal.pone.0020078. |
21 | Reich PB, Oleksyn J, Wright IJ (2009). Leaf phosphorus influences the photosynthesis-nitrogen relation: A cross-biome analysis of 314 species.Oecologia, 160, 207-212. |
22 | Terry N, Ulrich A (1973). Effects of phosphorus deficiency on the photosynthesis and respiration of leaves of sugar beet.Plant Physiology, 51, 43-47. |
23 | Wan HW, Yang Y, Bai SQ, Xu YH, Bai YF (2008). Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Journal of Plant Ecology (Chinese Version), 32, 611-621. (in Chinese with English abstract) |
[万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞 (2008). 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报, 32, 611-621.] | |
24 | Wang RZ (1997). The niche breaths and niche overlaps of main plant populations in Leymus chinensis grassland for grazing.Acta Phytoecologica Sinica, 21, 304-311. (in Chinese with English abstract) |
[王仁忠 (1997). 放牧影响下羊草草地主要植物种群生态位宽度与生态位重叠的研究. 植物生态学报, 21, 304-311.] | |
25 | Wang YH, He XY, Zhou GS (2002). Study on the responses of Leymus chinensis steppe to grazing in Songnen Plain.Acta Agrestia Sinica, 10, 45-49. (in Chinese with English abstract) |
[王玉辉, 何兴元, 周广胜 (2002). 放牧强度对羊草草原的影响. 草地学报, 10, 45-49.] | |
26 | Wang YL, Xu ZZ, Zhou GS (2004). Changes in biomass allocation and gas exchange characteristics of Leymus chinensis in response to soil water stress.Acta Phytoecologica Sinica, 28, 803-809. (in Chinese with English abstract) |
[王云龙, 许振柱, 周广胜 (2004). 水分胁迫对羊草光合产物分配及其气体交换特征的影响. 植物生态学报, 28, 803-809.] | |
27 | Xu JC, Xu XY (2013). A study on growth rate and the growth rate hypothesis in Leymus chinensis.Pratacultural Science, 30, 74-79. (in Chinese with English abstract) |
[徐劲草, 许新宜 (2013). 羊草生长率的研究和生长率假说的验证. 草业科学, 30, 74-79.] | |
28 | Xu ZZ, Zhou GS (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis.Planta, 224, 1080-1090. |
29 | Zhang LX, Bai YF, Han XG (2003). Application of N:P stoichiometry to ecology studies.Acta Botanica Sinica, 45, 1009-1018. |
30 | Zhang LX, Bai YF, Han XG (2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol.Acta Botanica Sinica, 46, 259-270. |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[4] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[5] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[6] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[7] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[8] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[9] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[10] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[11] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[12] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
[13] | 代景忠, 白玉婷, 卫智军, 张楚, 闫瑞瑞. 切根对羊草营养生长期内植物功能性状的影响[J]. 植物生态学报, 2021, 45(12): 1292-1302. |
[14] | 潘权, 郑华, 王志恒, 文志, 杨延征. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 1140-1153. |
[15] | 刘润红, 白金连, 包含, 农娟丽, 赵佳佳, 姜勇, 梁士楚, 李月娟. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联[J]. 植物生态学报, 2020, 44(8): 828-841. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19