Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (4): 402-410.DOI: 10.3724/SP.J.1258.2011.00402
• Research Articles • Previous Articles Next Articles
FAN Wen-Yi*(), ZHANG Hai-Yu, YU Ying, MAO Xue-Gang, YANG Jin-Ming
Received:
2010-09-15
Accepted:
2010-11-26
Online:
2011-09-15
Published:
2011-04-13
FAN Wen-Yi, ZHANG Hai-Yu, YU Ying, MAO Xue-Gang, YANG Jin-Ming. Comparison of three models of forest biomass estimation[J]. Chin J Plant Ecol, 2011, 35(4): 402-410.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00402
树种1) Species1) | 茎生物量 Stem biomass (WS) | 枝生物量 Branch biomass (WB) | 叶生物量 Foliage biomass (WL) | 出处 Derivation | 树高 Tree height (H) |
---|---|---|---|---|---|
1 | WS = 0.0145(D2H)1.006 | WB = 0.000063(D2H)1.536 | WL = 0.00104(D2H)1.148 | H = 6.6831exp(0.0515D) | |
2 | WS = 0.0134(D2H)1.020 | WB = 0.0105(D2H) 0.7386 | WL = 0.181D1.8415 | H = 5.7584exp(0.0499D) | |
3 | WS = 0.025(D2H)0.96 | WB = 0.0021(D2H)0.8181 | WL = 0.00126(D2H)0.968 | H = 6.9441exp(0.0468D) | |
4 | WS = 0.057D2.4753 | WB = 0.0116D2.4054 | WL = 0.0083D2.3733 | H = 6.8879exp(0.0343D) | |
5 | WS = 0.0238(D2H)0.936 | WB = 0.005(D2H)0.9105 | WL = 0.0036(D2H)0.897 | H = 6.8879exp(0.0343D) | |
6 | WS = 0.032417D2.3565 | WB = 0.20893D1.7082 | WL = 0.29156D1.2807 | Self-established | H = 6.6831exp(0.0515D) |
7 | WS = 0.06013(D2H)0.891 | WB = 0.00652(D2H)1.169 | WL = 0.0044(D2H)0.9919 | H = 8.4834exp(0.0277D) | |
8 | WS = 0.02511(D2H)0.927 | WB = 0.00957(D2H)0.974 | WL = 0.8725(D2H)0.2034 | H = 10.6exp(0.0169D) | |
9 | WS = 0.2286(D2H)0.6938 | WB = 0.0247(D2H)0.7378 | WL = 0.0108(D2H)0.8181 | Self-established | H = 9.285exp(0.0196D) |
10 | WS = 0.3274(D2H)0.7217 | WB = 0.01349(D2H)0.7197 | WL = 0.02347(D2H)0.893 | Self-established | H = 7.0338exp(0.0332D) |
11 | WS = 0.03146(D2H)1.032 | WB = 0.007429D2.6745 | WL = 0.002754D2.4965 | H = 8.1427exp(0.0249D) | |
12 | WS = 0.07936(D2H)0.901 | WB = 0.014167(D2H)0.764 | WL = 0.01086(D2H)0.847 | Self-established | H = 13.799exp(0.0138D) |
13 | WS = 0.14114(D2H)0.723 | WB = 0.00724(D2H)1.0225 | WL = 0.0079(D2H)0.8085 | H = 6.2635exp(0.0334D) | |
14 | WS = 0.03141(D2H)0.733 | WB = 0.002127D2.9504 | WL = 0.00321D2.473 5 | H = 8.1877exp(0.0219D) | |
15 | WS = 0.01275(D2H)1.009 | WB = 0.00824(D2H)0.975 | WL = 0.00024(D2H)0.991 | H = 7.0889exp(0.0349D) | |
16 | WS = 0.1193(D2H)0.8372 | WB = 0.002(D2H)1.12 | WL = 0.000015(D2H)1.47 | H = 9.8065exp(0.0246D) | |
17 | WS = 0.2286(D2H)0.6938 | WB = 0.0247(D2H)0.7378 | WL = 0.0108(D2H)0.8181 | H = 12.136exp(0.0133D) |
Table 1 Biomass and tree height functions of main tree species
树种1) Species1) | 茎生物量 Stem biomass (WS) | 枝生物量 Branch biomass (WB) | 叶生物量 Foliage biomass (WL) | 出处 Derivation | 树高 Tree height (H) |
---|---|---|---|---|---|
1 | WS = 0.0145(D2H)1.006 | WB = 0.000063(D2H)1.536 | WL = 0.00104(D2H)1.148 | H = 6.6831exp(0.0515D) | |
2 | WS = 0.0134(D2H)1.020 | WB = 0.0105(D2H) 0.7386 | WL = 0.181D1.8415 | H = 5.7584exp(0.0499D) | |
3 | WS = 0.025(D2H)0.96 | WB = 0.0021(D2H)0.8181 | WL = 0.00126(D2H)0.968 | H = 6.9441exp(0.0468D) | |
4 | WS = 0.057D2.4753 | WB = 0.0116D2.4054 | WL = 0.0083D2.3733 | H = 6.8879exp(0.0343D) | |
5 | WS = 0.0238(D2H)0.936 | WB = 0.005(D2H)0.9105 | WL = 0.0036(D2H)0.897 | H = 6.8879exp(0.0343D) | |
6 | WS = 0.032417D2.3565 | WB = 0.20893D1.7082 | WL = 0.29156D1.2807 | Self-established | H = 6.6831exp(0.0515D) |
7 | WS = 0.06013(D2H)0.891 | WB = 0.00652(D2H)1.169 | WL = 0.0044(D2H)0.9919 | H = 8.4834exp(0.0277D) | |
8 | WS = 0.02511(D2H)0.927 | WB = 0.00957(D2H)0.974 | WL = 0.8725(D2H)0.2034 | H = 10.6exp(0.0169D) | |
9 | WS = 0.2286(D2H)0.6938 | WB = 0.0247(D2H)0.7378 | WL = 0.0108(D2H)0.8181 | Self-established | H = 9.285exp(0.0196D) |
10 | WS = 0.3274(D2H)0.7217 | WB = 0.01349(D2H)0.7197 | WL = 0.02347(D2H)0.893 | Self-established | H = 7.0338exp(0.0332D) |
11 | WS = 0.03146(D2H)1.032 | WB = 0.007429D2.6745 | WL = 0.002754D2.4965 | H = 8.1427exp(0.0249D) | |
12 | WS = 0.07936(D2H)0.901 | WB = 0.014167(D2H)0.764 | WL = 0.01086(D2H)0.847 | Self-established | H = 13.799exp(0.0138D) |
13 | WS = 0.14114(D2H)0.723 | WB = 0.00724(D2H)1.0225 | WL = 0.0079(D2H)0.8085 | H = 6.2635exp(0.0334D) | |
14 | WS = 0.03141(D2H)0.733 | WB = 0.002127D2.9504 | WL = 0.00321D2.473 5 | H = 8.1877exp(0.0219D) | |
15 | WS = 0.01275(D2H)1.009 | WB = 0.00824(D2H)0.975 | WL = 0.00024(D2H)0.991 | H = 7.0889exp(0.0349D) | |
16 | WS = 0.1193(D2H)0.8372 | WB = 0.002(D2H)1.12 | WL = 0.000015(D2H)1.47 | H = 9.8065exp(0.0246D) | |
17 | WS = 0.2286(D2H)0.6938 | WB = 0.0247(D2H)0.7378 | WL = 0.0108(D2H)0.8181 | H = 12.136exp(0.0133D) |
变量 Variable | 相关系数 Correlation coefficient | 变量 Variable | 相关系数 Correlation coefficient | 变量 Variable | 相关系数 Correlation coefficient | |||
---|---|---|---|---|---|---|---|---|
原始波段 Original band | Band1 | -0.029 | 纹理信息 Texture | 对角线方向 diagonal direction | 相异性 Dissimilarity | Dis1 | -0.206 | |
Band2 | -0.508** | 平均值 Mean | Mean1 | -0.354** | Dis2 | -0.342** | ||
Band3 | -0.450** | Mean2 | -0.225* | Dis3 | -0.061 | |||
Band4 | 0.035 | Mean3 | -0.122 | Dis4 | -0.093 | |||
Band5 | -0.357** | Mean4 | 0.027 | Dis5 | -0.301** | |||
Band7 | -0.459** | Mean5 | -0.383** | Dis7 | 0.038 | |||
波段组合 Band combination | TM73 | 0.100 | Mean7 | -0.323** | 熵 Entropy | Ent1 | -0.233* | |
TM437 | -0.095 | 方差 Variance | Var1 | -0.250* | Ent2 | -0.342** | ||
TM452 | 0.511** | Var2 | -0.308** | Ent3 | -0.137 | |||
TM42 | 0.591** | Var3 | -0.122 | Ent4 | -0.136 | |||
差值植被指数 Difference vegetation index (DVI) | 0.121 | Var4 | -0.178 | Ent5 | -0.336** | |||
简单比值指数 Simple ratio (SR) | 0.482** | Var5 | -0.305** | Ent7 | -0.017 | |||
归一化植被指数 Normalized difference vegetation index (NDVI) | 0.419** | Var7 | -0.062 | 角二阶矩 Angular second moment | Sec1 | 0.230* | ||
转换型植被指数 Transformed vegetation index (TVI) | 0.415** | 均一性 Homogeneity | Hom1 | 0.206 | Sec2 | 0.340** | ||
垂直植被指数 Perpendicular vegetation index (PVI) | 0.071 | Hom2 | 0.342** | Sec3 | 0.137 | |||
红外指数 Infrared index (II) | 0.466** | Hom3 | 0.061 | Sec4 | 0.108 | |||
土壤调整植被指数 Soil-adjusted vegetation index (SAVI) | 0.418** | Hom4 | 0.088 | Sec5 | 0.329** | |||
优化的简单比值指数 Modified simple ratio (MSR) | 0.469** | Hom5 | 0.301** | Sec7 | 0.019 | |||
土壤调整植被指数2 Soil-adjusted vegetation index 2 (SAVI2) | 0.409** | Hom7 | -0.038 | 相关性 Correlation | Cor1 | 0.309** | ||
非线性植被指数 Non-linear index (NLI) | 0.330** | 对比度 Contrast | Con1 | -0.206 | Cor2 | 0.366** | ||
地学信息 Geographic information | 纵坐标Y Y-coordinate | -0.259* | Con2 | -0.342** | Cor3 | 0.131 | ||
横坐标X X-coordinate | -0.231* | Con3 | -0.061 | Cor4 | 0.143 | |||
高程 Elevation | 0.598** | Con4 | -0.113 | Cor5 | 0.172 | |||
坡向 Slope aspect | -0.280** | Con5 | -0.292** | Cor7 | 0.095 | |||
坡度 Slope | -0.125 | Con7 | 0.038 | 郁闭度 Closure | 0.283** |
Table 2 Correlation coefficients between biomass of plots and independent variables
变量 Variable | 相关系数 Correlation coefficient | 变量 Variable | 相关系数 Correlation coefficient | 变量 Variable | 相关系数 Correlation coefficient | |||
---|---|---|---|---|---|---|---|---|
原始波段 Original band | Band1 | -0.029 | 纹理信息 Texture | 对角线方向 diagonal direction | 相异性 Dissimilarity | Dis1 | -0.206 | |
Band2 | -0.508** | 平均值 Mean | Mean1 | -0.354** | Dis2 | -0.342** | ||
Band3 | -0.450** | Mean2 | -0.225* | Dis3 | -0.061 | |||
Band4 | 0.035 | Mean3 | -0.122 | Dis4 | -0.093 | |||
Band5 | -0.357** | Mean4 | 0.027 | Dis5 | -0.301** | |||
Band7 | -0.459** | Mean5 | -0.383** | Dis7 | 0.038 | |||
波段组合 Band combination | TM73 | 0.100 | Mean7 | -0.323** | 熵 Entropy | Ent1 | -0.233* | |
TM437 | -0.095 | 方差 Variance | Var1 | -0.250* | Ent2 | -0.342** | ||
TM452 | 0.511** | Var2 | -0.308** | Ent3 | -0.137 | |||
TM42 | 0.591** | Var3 | -0.122 | Ent4 | -0.136 | |||
差值植被指数 Difference vegetation index (DVI) | 0.121 | Var4 | -0.178 | Ent5 | -0.336** | |||
简单比值指数 Simple ratio (SR) | 0.482** | Var5 | -0.305** | Ent7 | -0.017 | |||
归一化植被指数 Normalized difference vegetation index (NDVI) | 0.419** | Var7 | -0.062 | 角二阶矩 Angular second moment | Sec1 | 0.230* | ||
转换型植被指数 Transformed vegetation index (TVI) | 0.415** | 均一性 Homogeneity | Hom1 | 0.206 | Sec2 | 0.340** | ||
垂直植被指数 Perpendicular vegetation index (PVI) | 0.071 | Hom2 | 0.342** | Sec3 | 0.137 | |||
红外指数 Infrared index (II) | 0.466** | Hom3 | 0.061 | Sec4 | 0.108 | |||
土壤调整植被指数 Soil-adjusted vegetation index (SAVI) | 0.418** | Hom4 | 0.088 | Sec5 | 0.329** | |||
优化的简单比值指数 Modified simple ratio (MSR) | 0.469** | Hom5 | 0.301** | Sec7 | 0.019 | |||
土壤调整植被指数2 Soil-adjusted vegetation index 2 (SAVI2) | 0.409** | Hom7 | -0.038 | 相关性 Correlation | Cor1 | 0.309** | ||
非线性植被指数 Non-linear index (NLI) | 0.330** | 对比度 Contrast | Con1 | -0.206 | Cor2 | 0.366** | ||
地学信息 Geographic information | 纵坐标Y Y-coordinate | -0.259* | Con2 | -0.342** | Cor3 | 0.131 | ||
横坐标X X-coordinate | -0.231* | Con3 | -0.061 | Cor4 | 0.143 | |||
高程 Elevation | 0.598** | Con4 | -0.113 | Cor5 | 0.172 | |||
坡向 Slope aspect | -0.280** | Con5 | -0.292** | Cor7 | 0.095 | |||
坡度 Slope | -0.125 | Con7 | 0.038 | 郁闭度 Closure | 0.283** |
r | R2 | R2adj | SE | Sig. | DW |
---|---|---|---|---|---|
0.887 | 0.788 | 0.776 | 11.57 | 0.000 | 2.054 |
Table 3 Description of regression model
r | R2 | R2adj | SE | Sig. | DW |
---|---|---|---|---|---|
0.887 | 0.788 | 0.776 | 11.57 | 0.000 | 2.054 |
变量 Variable | Coef_uns | Coef_s | t0.05 | Sig. | VIF |
---|---|---|---|---|---|
常数 Constant | 125.696 8 | 6.211 | 0.000 | ||
郁闭度 Closure | 18.692 6 | 0.123 7 | 2.402 | 0.018 | 1.099 |
高程 Elevation | 0.024 | 0.134 3 | 2.265 | 0.026 | 1.456 |
X | -0.000 14 | -0.266 3 | -5.273 | 0.000 | 1.057 |
Band3 | -0.057 5 | -0.273 1 | -4.258 | 0.000 | 1.704 |
Cor1 | 0.295 4 | 0.539 5 | 7.903 | 0.000 | 1.931 |
Table 4 Results of regression model coefficients, significance and collinearity
变量 Variable | Coef_uns | Coef_s | t0.05 | Sig. | VIF |
---|---|---|---|---|---|
常数 Constant | 125.696 8 | 6.211 | 0.000 | ||
郁闭度 Closure | 18.692 6 | 0.123 7 | 2.402 | 0.018 | 1.099 |
高程 Elevation | 0.024 | 0.134 3 | 2.265 | 0.026 | 1.456 |
X | -0.000 14 | -0.266 3 | -5.273 | 0.000 | 1.057 |
Band3 | -0.057 5 | -0.273 1 | -4.258 | 0.000 | 1.704 |
Cor1 | 0.295 4 | 0.539 5 | 7.903 | 0.000 | 1.931 |
激活函数 Activation function | 最小训练次数 Minimum training times | 最大训练次数 Maximum training times | 平均训练次数 Average training times | 预测平方差和 Squared prediction error |
---|---|---|---|---|
Erf-BP | 317 | 359 | 338 | 20.83 |
传统BP神经网络模型 Traditonal BP neutral network model | 509 | 723 | 616 | 21.44 |
Table 5 Comparisons of training results by traditional BP neutral network model and Erf-BP
激活函数 Activation function | 最小训练次数 Minimum training times | 最大训练次数 Maximum training times | 平均训练次数 Average training times | 预测平方差和 Squared prediction error |
---|---|---|---|---|
Erf-BP | 317 | 359 | 338 | 20.83 |
传统BP神经网络模型 Traditonal BP neutral network model | 509 | 723 | 616 | 21.44 |
建模方法 Modeling method | R2 | 预测精度 PRECISIONmod | 预测精度 PRECISIONpre | 均方根误差 RMSEmod (t·m-2) | 均方根误差 RMSEpre (t·m-2) |
---|---|---|---|---|---|
逐步回归法 Regression | 0.788 | 76.00% | 75.00% | 18.91 | 26.87 |
Erf-BP | 0.975 | 86.04% | 82.22% | 10.17 | 20.83 |
Table 6 Comparisons of precisions by different models
建模方法 Modeling method | R2 | 预测精度 PRECISIONmod | 预测精度 PRECISIONpre | 均方根误差 RMSEmod (t·m-2) | 均方根误差 RMSEpre (t·m-2) |
---|---|---|---|---|---|
逐步回归法 Regression | 0.788 | 76.00% | 75.00% | 18.91 | 26.87 |
Erf-BP | 0.975 | 86.04% | 82.22% | 10.17 | 20.83 |
[1] | Brown S, Sathaye J, Canell M, Kauppi PE (1996). Mitigation of carbon emission to the atmosphere by forest management. Commonwealth Forestry Review, 75, 80-91. |
[2] | Chen CG (陈传国), Zhu JF (朱俊凤) (1989). Northeast Main Forest Biomass Handbook (东北主要林木生物量手册). China Forestry Publishing House, Beijing. (in Chinese) |
[3] | Ding BY (丁宝永), Sun JH (孙继华) (1989). Studies on biological productivity and nutrient cycling of artificial forest ecosystem of Korean pine. Journal of Northeast Forestry University (东北林业大学学报), 17(Suppl. 2), 18-19. (in Chinese with English abstract) |
[4] | Efron B (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7, 1-26. |
[5] | Guo QX (国庆喜), Zhang F (张锋) (2003). Estimation of forest biomass based on remote sensing. Journal of Northeast Forestry University (东北林业大学学报), 31(2), 13-16. (in Chinese with English abstract) |
[6] | Guo ZH (郭志华), Peng SL (彭少麟), Wang BS (王伯荪) (2002). Estimating forest biomass in western Guangdong using landsat TM data. Acta Ecologica Sinica (生态学报), 22, 1832-1839. (in Chinese with English abstract) |
[7] | Hall RJ, Skakun RS, Arsenault EJ, Case BS (2006). Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. Forest Ecology and Management, 225, 378-390. |
[8] | Haralick RM (1979). Statistical and structural approaches to texture. Proceeding of the IEEE, 67, 786-804. |
[9] | Holben B, Tucker CJ, Fan CJ (1980). Spectral assessment of soybean leaf area and leaf biomass. Photogrammetric Engineering and Remote Sensing, 46, 651-656. |
[10] | Ingram JC, Dawson TP, Whittaker RJ (2005). Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment, 94, 491-507. |
[11] | Jiang H (江洪) (1992). Study on Donglingshan Mountain Deciduous Broadleaved Forest Biomass and NPP Research (东灵山落叶阔叶林森林生物量和NPP的研究). Postdoctoral research report, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[12] | Lu D, Batistella M (2005). Exploring TM image texture and its relationship with biomass estimation in Rondonia, Brazilian Amazon. Acta Amazonica, 35, 249-257. |
[13] | Luo TX (罗天祥) (1996). Patterns of Net Primary Productivity for Chinese Major Forest Types and Their Mathematical Models (中国主要森林类型生物生产力格局及其数学模型). PhD dissertation, The Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences, Beijing. 181-184. (in Chinese with English abstract) |
[14] | Pang Y (庞勇), Li ZY (李增元), Chen EX (陈尔学), Sun GQ (孙国清) (2005). Lidar remote sensing technology and its application in forestry. Scientia Silvae Sinicae (林业科学), 41(3), 129-136. (in Chinese with English abstract) |
[15] | Singh KP, Ojha P, Malik A, Jain G (2009). Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution. Chemometrics and Intelligent Laboratory Systems, 99, 150-160. |
[16] | Tang SZ (唐守正), Zhang HR (张会儒), Xu H (胥辉) (2000). Study on establish and estimate method of compatible biomass model. Scientia Silvae Sinicae (林业科学), 36(1), 19-27. (in Chinese with English abstract) |
[17] | Wang HW (王惠文), Wu ZB (吴载斌), Meng J (孟洁) (2006). Partial Least-Squares Regression-Linear and Nonlinear Methods (偏最小二乘回归的线性与非线性方法). National Defence Industrial Press, Beijing. 57. (in Chinese) |
[18] | Xue L (薛立), Yang P (杨鹏) (2004). Summary of research on forest biomass. Journal of Fujian College of Forestry (福建林学院学报), 24, 283-288. (in Chinese with English abstract) |
[19] | Yang CJ (杨存建), Liu JY (刘纪远), Zhang ZX (张增祥) (2004). Study on the estimation of the tropical forest vegetation biomass by using remote sensing data, meteorological data and topographical data. Geography and Geo-Information Science (地理与地理信息科学), 20(6), 22-25. (in Chinese with English abstract) |
[20] | Zhang HY (张海燕), Feng TJ (冯天瑾) (2002). A study on BP networks with combined activitation functions. Journal of Ocean University of Qingdao (青岛海洋大学学报), 32, 621-626. (in Chinese with English abstract) |
[21] | Zeng WH (曾文华) (2006). Texture Information Extraction in Remote Sensing Imageries with Gray Level Co-occurrence Matrix and Wavelet Transform (基于灰度共生法和小波变换的遥感影像纹理信息提取). PhD dissertation, Northeast Normal University, Changchun. 11-14. (in Chinese with English abstract) |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[8] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[9] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[10] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[11] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[12] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[13] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[14] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[15] | LI Bian-Bian, ZHANG Feng-Hua, ZHAO Ya-Guang, SUN Bing-Nan. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus [J]. Chin J Plant Ecol, 2023, 47(1): 101-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn