Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (2): 117-125.DOI: 10.3724/SP.J.1258.2012.00117
• Research Articles • Previous Articles Next Articles
ZHANG Yuan-Dong*(), LIU Yan-Chun, LIU Shi-Rong, ZHANG Xiao-He
Received:
2011-06-02
Accepted:
2011-12-10
Online:
2012-06-02
Published:
2012-02-22
Contact:
ZHANG Yuan-Dong
ZHANG Yuan-Dong, LIU Yan-Chun, LIU Shi-Rong, ZHANG Xiao-He. Dynamics of stand biomass and volume of the tree layer in forests with different restoration approaches based on tree-ring analysis[J]. Chin J Plant Ecol, 2012, 36(2): 117-125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.00117
森林类型 Forest type | 海拔 Elevation (m) | 坡向 Slope aspect (°) | 坡度 Slope gradient (°) | 林分密度 Stand density (tree · hm-2) | 平均胸径 Mean DBH (cm) | 林龄 Stand age (a) | 样芯数 No. of cores |
---|---|---|---|---|---|---|---|
PSFI | 3 212 | NE 40 | 10 | 829.3 | 21.4 ± 6.2 | 43 | 47 |
PSFII | 3 261 | NE 45 | 15 | 914.5 | 20.1 ± 5.7 | 44 | 49 |
PSFIII | 3 252 | SE 70 | 10 | 964.7 | 19.7 ± 5.6 | 39 | 53 |
SBFI | 3 214 | NW 40 | 26 | 3 021.5 | 9.3 ± 3.4 | 49 | 104 |
SBFII | 3 238 | NW 25 | 20 | 3 086.1 | 11.2 ± 3.3 | 45 | 77 |
SBFIII | 3 326 | NE 20 | 18 | 2 788.1 | 10.1 ± 4.5 | 50 | 94 |
SMFI | 3 020 | NE 40 | 30 | 3 262.0 | 11.1 ± 3.4 | 36 | 93 |
SMFII | 2 990 | NE 20 | 20 | 3 188.1 | 9.5 ± 3.4 | 35 | 124 |
SMFIII | 3 345 | NE 15 | 20 | 3 032.7 | 11.7 ± 4.6 | 38 | 101 |
Table 1 Basic information of sample plots of subalpine region in Western Sichuan
森林类型 Forest type | 海拔 Elevation (m) | 坡向 Slope aspect (°) | 坡度 Slope gradient (°) | 林分密度 Stand density (tree · hm-2) | 平均胸径 Mean DBH (cm) | 林龄 Stand age (a) | 样芯数 No. of cores |
---|---|---|---|---|---|---|---|
PSFI | 3 212 | NE 40 | 10 | 829.3 | 21.4 ± 6.2 | 43 | 47 |
PSFII | 3 261 | NE 45 | 15 | 914.5 | 20.1 ± 5.7 | 44 | 49 |
PSFIII | 3 252 | SE 70 | 10 | 964.7 | 19.7 ± 5.6 | 39 | 53 |
SBFI | 3 214 | NW 40 | 26 | 3 021.5 | 9.3 ± 3.4 | 49 | 104 |
SBFII | 3 238 | NW 25 | 20 | 3 086.1 | 11.2 ± 3.3 | 45 | 77 |
SBFIII | 3 326 | NE 20 | 18 | 2 788.1 | 10.1 ± 4.5 | 50 | 94 |
SMFI | 3 020 | NE 40 | 30 | 3 262.0 | 11.1 ± 3.4 | 36 | 93 |
SMFII | 2 990 | NE 20 | 20 | 3 188.1 | 9.5 ± 3.4 | 35 | 124 |
SMFIII | 3 345 | NE 15 | 20 | 3 032.7 | 11.7 ± 4.6 | 38 | 101 |
树种 Tree species | 地上部分器官 Aboveground organ | 异速生长模型 Allometric model | 决定系数 Determination coefficient | 文献来源 Origin of references | |
---|---|---|---|---|---|
冷杉 Abies spp. | 干 Stem | W = 0.0139(D2H)1.0075 | R2 = 0.998 6 | Luo et al., 2002 | |
枝 Branch | W = 0.0014(D2H)1.0503 | R2 = 0.911 8 | |||
叶 Leaf | 胸径 DBH < 40 cm时, | W = 0.0003(D2H)1.2032 | R2 = 0.934 1 | ||
胸径 DBH > 40 cm时, | W = 11.5060ln(D2H) - 74.7330 | R2 = 0.753 9 | |||
云杉 Picea spp. | 干 Stem | W = 0.0405D2.5680 | R2 = 0.989 0 | Luo et al., 2002 | |
枝 Branch | W = 0.0037D2.7386 | R2 = 0.945 0 | |||
叶 Leaf | 胸径 DBH < 40 cm时, | W = 0.0014D2.9302 | R2 = 0.941 9 | ||
胸径 DBH > 40 cm时, | W = 29.5410lnD - 63.1500 | R2 = 0.757 4 | |||
桦木 Betula spp. | 干 Stem | W = 0.1411(D2H)0.7234 | R2 = 0.980 1 | Feng et al., 1999 | |
枝 Branch | W = 0.0072(D2H)1.0225 | R2 = 0.774 4 | |||
叶 Leaf | W = 0.0151(D2H)0.8085 | R2 = 0.828 1 | |||
树种 Tree species | 地上部分器官 Aboveground organ | 异速生长模型 Allometric model | 决定系数 Determination coefficient | 文献来源 Origin of references | |
槭树 Acer spp. | 干 Stem | W = 0.3274(D2H)0.7218 | R2 = 0.932 5 | Chen, 1983 | |
枝 Branch | W = 0.0135(D2H)0.7198 | R2 = 0.911 4 | |||
叶 Leaf | W = 0.0235(D2H)0.6929 | R2 = 0.891 7 | |||
杨木 Poplar spp. | 干 Stem | W = 0.0537(D2H)0.9270 | R2 = 0.987 0 | Zhu et al., 1988 | |
枝 Branch | W = 0.0125(D2H)0.9504 | R2 = 0.863 0 | |||
叶 Leaf | W = 0.0221(D2H)0.7583 | R2 = 0.786 0 | |||
其他阔叶树 Other broadleaf species | 干 Stem | W = 0.0097(D2H) + 5.8252 | R2 = 0.991 4 | Luo et al., 2002 | |
枝 Branch | W = 0.0510(D2H) + 3.5080 | R2 = 0.982 5 | |||
叶 Leaf | W = 0.0004(D2H) + 0.7563 | R2 = 0.933 3 |
Appendix I Allometric models for tree aboveground biomass in subalpine secondary forest in Western Sichuan
树种 Tree species | 地上部分器官 Aboveground organ | 异速生长模型 Allometric model | 决定系数 Determination coefficient | 文献来源 Origin of references | |
---|---|---|---|---|---|
冷杉 Abies spp. | 干 Stem | W = 0.0139(D2H)1.0075 | R2 = 0.998 6 | Luo et al., 2002 | |
枝 Branch | W = 0.0014(D2H)1.0503 | R2 = 0.911 8 | |||
叶 Leaf | 胸径 DBH < 40 cm时, | W = 0.0003(D2H)1.2032 | R2 = 0.934 1 | ||
胸径 DBH > 40 cm时, | W = 11.5060ln(D2H) - 74.7330 | R2 = 0.753 9 | |||
云杉 Picea spp. | 干 Stem | W = 0.0405D2.5680 | R2 = 0.989 0 | Luo et al., 2002 | |
枝 Branch | W = 0.0037D2.7386 | R2 = 0.945 0 | |||
叶 Leaf | 胸径 DBH < 40 cm时, | W = 0.0014D2.9302 | R2 = 0.941 9 | ||
胸径 DBH > 40 cm时, | W = 29.5410lnD - 63.1500 | R2 = 0.757 4 | |||
桦木 Betula spp. | 干 Stem | W = 0.1411(D2H)0.7234 | R2 = 0.980 1 | Feng et al., 1999 | |
枝 Branch | W = 0.0072(D2H)1.0225 | R2 = 0.774 4 | |||
叶 Leaf | W = 0.0151(D2H)0.8085 | R2 = 0.828 1 | |||
树种 Tree species | 地上部分器官 Aboveground organ | 异速生长模型 Allometric model | 决定系数 Determination coefficient | 文献来源 Origin of references | |
槭树 Acer spp. | 干 Stem | W = 0.3274(D2H)0.7218 | R2 = 0.932 5 | Chen, 1983 | |
枝 Branch | W = 0.0135(D2H)0.7198 | R2 = 0.911 4 | |||
叶 Leaf | W = 0.0235(D2H)0.6929 | R2 = 0.891 7 | |||
杨木 Poplar spp. | 干 Stem | W = 0.0537(D2H)0.9270 | R2 = 0.987 0 | Zhu et al., 1988 | |
枝 Branch | W = 0.0125(D2H)0.9504 | R2 = 0.863 0 | |||
叶 Leaf | W = 0.0221(D2H)0.7583 | R2 = 0.786 0 | |||
其他阔叶树 Other broadleaf species | 干 Stem | W = 0.0097(D2H) + 5.8252 | R2 = 0.991 4 | Luo et al., 2002 | |
枝 Branch | W = 0.0510(D2H) + 3.5080 | R2 = 0.982 5 | |||
叶 Leaf | W = 0.0004(D2H) + 0.7563 | R2 = 0.933 3 |
树种 Tree species | 材积公式 Volume equation (m3) |
---|---|
桦木 Betula spp. | $V = 0.00004894 \times {\left( {0.9839 \times D - 0.3303} \right)^{2.0173}} \times {\left( {\frac{{33.2727 - 1031.4484}}{{31.549 + D}}} \right)^{0.9388}}$ |
冷杉 Abies spp. | $V = 0.00006322 \times {\left( { - 0.1027 + 0.99576 \times D} \right)^{1.901}} \times {\left( {\frac{{45.79737 - 1837.226}}{{D + 38.40604}}} \right)^{0.963}}$ |
云杉 Picea spp. | $V = 0.00005679 \times {\left( {0.37388 + 0.9721 \times D} \right)^{1.852}} \times {\left( {\frac{D}{{1.129 + 0.0161 \times D}}} \right)^{1.0335}}$ |
杨树 Poplar spp. | $V = 0.00005275 \times {\left( { - 0.5162 + 1.0942 \times D} \right)^{1.94526}} \times {\left( {\frac{D}{{0.74623 + 0.0421 \times D}}} \right)^{0.93885}}$ |
槭树 Acer spp. | $V = 0.00005275 \times {\left( {0.49896 + 0.9661 \times D} \right)^{1.945}} \times {\left( {\frac{D}{{0.84118 + 0.0381}}} \right)^{0.93885}}$ |
Appendix II Table of one-way tree volume models of the main tree species in Western Sichuan1)
树种 Tree species | 材积公式 Volume equation (m3) |
---|---|
桦木 Betula spp. | $V = 0.00004894 \times {\left( {0.9839 \times D - 0.3303} \right)^{2.0173}} \times {\left( {\frac{{33.2727 - 1031.4484}}{{31.549 + D}}} \right)^{0.9388}}$ |
冷杉 Abies spp. | $V = 0.00006322 \times {\left( { - 0.1027 + 0.99576 \times D} \right)^{1.901}} \times {\left( {\frac{{45.79737 - 1837.226}}{{D + 38.40604}}} \right)^{0.963}}$ |
云杉 Picea spp. | $V = 0.00005679 \times {\left( {0.37388 + 0.9721 \times D} \right)^{1.852}} \times {\left( {\frac{D}{{1.129 + 0.0161 \times D}}} \right)^{1.0335}}$ |
杨树 Poplar spp. | $V = 0.00005275 \times {\left( { - 0.5162 + 1.0942 \times D} \right)^{1.94526}} \times {\left( {\frac{D}{{0.74623 + 0.0421 \times D}}} \right)^{0.93885}}$ |
槭树 Acer spp. | $V = 0.00005275 \times {\left( {0.49896 + 0.9661 \times D} \right)^{1.945}} \times {\left( {\frac{D}{{0.84118 + 0.0381}}} \right)^{0.93885}}$ |
Fig. 1 Annual mean growth rate of different DBH classes for three recovery forest types (mean ± SE). DBH, diameter at breast height. PSF, planted spruce (Picea asperata) forest; SBF, secondary birch (Betula spp.) forest; SMF, secondary coniferous and broad-leaved mixed forest. Values labelled by the same lowercase in each forest type are not significant different between diameter classes (p > 0.05).
Fig. 2 Changes of stand mean diameter at breast height (DBH) with stand age for three recovery forest types. PSF, planted spruce (Picea asperata) forest; SBF, secondary birch (Betula spp.) forest; SMF, secondary coniferous and broad- leaved mixed forest. DBH change among 1-15 years is enlarged in the new small chart.
Fig. 3 Dynamic comparisons of stand average aboveground biomass and volume among three recovery forest types. PSF, planted spruce (Picea asperata) forest; SBF, secondary birch (Betula spp.) forest; SMF, secondary coniferous and broad-leaved mixed forest.
Fig. 4 Dynamic changes of aboveground net primary productivity for stands with three restoration approaches. PSF, planted spruce (Picea asperata) forest; SBF, secondary birch (Betula spp.) forest; SMF, secondary coniferous and broad-leaved mixed forest. The data is five-year moving average of net primary productivity for three recovery forest types. Original data is not displayed in the chart for clarity.
Fig. 5 Relationships between stand density and stand age of three recovery forest types. PSF, planted spruce (Picea asperata) forest; SBF, secondary birch (Betula spp.) forest; SMF, secondary coniferous and broad-leaved mixed forest. *, p < 0.05; **, p < 0.01.
[1] |
Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297, 999-1002.
DOI URL PMID |
[2] | Barr AG, Black TA, Hogg EH, Griffis TJ, Morgenstern K, Kljun N, Theede A, Nesic Z (2007). Climatic controls on the carbon and water balances of a boreal aspen forest, 1994-2003. Global Change Biology, 13, 561-576. |
[3] | Biondi F (1999). Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecological Applications, 9, 216-227. |
[4] | Brienen RJW, Zuidema PA (2006). The use of tree rings in tropical forest management: projecting timber yields of four Bolivian tree species. Forest Ecology and Management, 226, 256-267. |
[5] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[6] | Fang JY (方精云) (2000). Forest biomass carbon pool of middle and high latitudes in the north hemisphere is probably much smaller than present estimates. Acta Phytoecologica Sinica (植物生态学报), 24, 635-638. (in Chinese with English abstract) |
[7] | Grissino-Mayer HD (2003). A manual and tutorial for the proper use of an increment borer. Tree-Ring Research, 59, 63-79. |
[8] | Kljun N, Black TA, Griffis TJ, Barr AG, Gaumont-Guay D, Morgenstern K, McCaughey JH, Nesic Z (2006). Response of net ecosystem productivity of three boreal forest stands to drought. Ecosystems, 9, 1128-1144. |
[9] | Lin B (林波), Liu Q (刘庆), Wu Y (吴彦), Pang XY (庞学勇), He H (何海) (2003). Effect of forest litters on soil physical and chemical properties in subalpine coniferous forests of western Sichuan. China Journal of Applied & Environ- mental Biology (应用与环境生物学报), 9, 346-351. (in Chinese with English abstract) |
[10] | Liu YC (刘彦春), Zhang YD (张远东), Liu SR (刘世荣) (2010a). Aboveground biomass, ANPP and stem volume of birch stands in natural restoration process of subalpine secondary forest in western Sichuan. Acta Ecologica Sinica (生态学报), 30, 594-601. (in Chinese with English abstract) |
[11] | Liu YC (刘彦春), Zhang YD (张远东), Liu SR (刘世荣), Zhang XH (张笑鹤) (2010b). Changes of tree layer aboveground biomass, ANPP to altitudinal gradient in the subalpine secondary mixed forest of western Sichuan, China. Acta Ecologica Sinica (生态学报), 30, 5810-5820. (in Chinese with English abstract) |
[12] | Metsaranta JM, Lieffers VJ (2009). Using dendrochronology to obtain annual data for modelling stand development: a supplement to permanent sample plots. Forestry, 82, 163-173. |
[13] | Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698-702. |
[14] | Picket STA (1989). Space for time substitution as an alternative to long-term studies. In: Likens GE ed. Long-Term Studies in Ecology: Approaches and Alternatives. Springer, New York, 110-135. |
[15] | Rozas V (2004). A dendroecological reconstruction of age structure and past management in an old-growth pollarded parkland in northern Spain. Forest Ecology and Management, 195, 205-219. |
[16] | Shi LX (史立新), Wang JX (王金锡), Su YM (宿以明), Hou GW (侯广维) (1988). The early succession process of vegetation at cut-over area of dark coniferous forest in Miyaluo, West Sichuan. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 12, 306-313. (in Chinese with English abstract) |
[17] | van Gemerden BS, Olff H, Parren MPE, Bongers F (2003). The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity. Journal of Biogeography, 30, 1381-1390. |
[18] |
Woodwell GM, Whittaker RH, Reiners WA, Likens GE, Delwiche CC, Botkin DB (1978). The biota and the world carbon budget. Science, 199, 141-146.
DOI URL PMID |
[19] | Worbes M, Klinge H, Revilla JD, Martius C (1992). On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. Journal of Vegetation Science, 3, 553-564. |
[20] | Xian JR (鲜骏仁), Zhang YB (张远彬), Wang KY (王开运), Hu TX (胡庭兴), Yang H (杨华) (2009). Carbon stock and its allocation in five forest ecosystems in the subalpine coniferous forest zone of western Sichuan Province, Southwest China. Chinese Journal of Plant Ecology (植物生态学报), 33, 283-290. (in Chinese with English abstract) |
[21] | Zhang J, Ge Y, Chang J, Jiang B, Jiang H, Peng CH, Zhu JR, Yuan WG, Qi LZ, Yu SQ (2007). Carbon storage by ecolo- gical service forests in Zhejiang Province, subtropical China. Forest Ecology and Management, 245, 64-75. |
[22] | Zhang YD (张远东), Liu SR (刘世荣), Zhao CM (赵常明) (2005a). Spatial pattern of subalpine forest restoration in West Sichuan. Chinese Journal of Applied Ecology (应用生态学报), 16, 1706-1710. (in Chinese with English abstract) |
[23] | Zhang YD (张远东), Zhao CM (赵常明), Liu SR (刘世荣) (2005b). The influence factors of sub-alpine forest restoration in Miyaluo, West Sichuan. Scientia Silvae Sinicae (林业科学), 41, 189-193. (in Chinese with English abstract) |
[24] | Zhao CM (赵常明), Chen QH (陈庆恒), Qiao YK (乔永康), Pan KW (潘开文) (2002). Dynamics of species diversity in the restoration process of artificial spruce conifer forest in the eastern edge of Qinghai-Tibetan Plateau. Acta Phytoecologica Sinica (植物生态学报), 26, 20-29. (in Chinese with English abstract) |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[8] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[9] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[10] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[11] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[12] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[13] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[14] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[15] | LI Bian-Bian, ZHANG Feng-Hua, ZHAO Ya-Guang, SUN Bing-Nan. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus [J]. Chin J Plant Ecol, 2023, 47(1): 101-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn