Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (4): 355-365.DOI: 10.3724/SP.J.1258.2014.00032
Special Issue: 青藏高原植物生态学:群落生态学; 碳循环
Previous Articles Next Articles
GAO Qiao1,2, YANG Xiao-Cheng1, YIN Chun-Ying2, LIU Qing2,*()
Received:
2013-10-11
Accepted:
2014-01-17
Online:
2014-10-11
Published:
2014-04-08
Contact:
LIU Qing
GAO Qiao, YANG Xiao-Cheng, YIN Chun-Ying, LIU Qing. Estimation of biomass allocation and carbon density in alpine dwarf shrubs in Garzê Zangzu Autonomous Prefecture of Sichuan Province, China[J]. Chin J Plant Ecol, 2014, 38(4): 355-365.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00032
样地编号 Plot ID | 调查地区 Location | 群落类型 Community type | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 坡度 Slope gradient (o) | 坡向 Slope aspect (o) |
---|---|---|---|---|---|---|---|
1 | 色达县 Sêrtar County | 窄叶鲜卑花 Sibiraea angustata | 31.85o | 100.73o | 3 535 | 21 | 35 |
2 | 炉霍县 Luhuo County | 窄叶鲜卑花 Sibiraea angustata | 31.62o | 100.23o | 3 847 | 20 | 340 |
3 | 甘孜县 Garzê County | 迟花矮柳-硬叶柳 Salix oreinoma-Salix sclerophylla | 31.55o | 99.98o | 3 785 | 16 | 95 |
4 | 甘孜县 Garzê County | 千里香杜鹃 Rhododendron thymifolium | 31.45o | 99.97o | 4 198 | 11 | 340 |
5 | 甘孜县 Garzê County | 草原杜鹃 Rhododendron telmateium | 31.42o | 99.97o | 4 543 | 20 | 265 |
6 | 新龙县 Xinlong County | 千里香杜鹃 Rhododendron thymifolium | 31.38o | 99.92o | 4 115 | 18 | 342 |
7 | 德格县 Dêgê County | 千里香杜鹃 Rhododendron thymifolium | 31.88o | 99.03o | 4 122 | 5 | 190 |
8 | 白玉县 Baiyu County | 草原杜鹃 Rhododendron telmateium | 31.22o | 99.85o | 4 561 | 17 | 237 |
9 | 甘孜县 Garzê County | 窄叶鲜卑花 Sibiraea angustata | 31.45o | 99.97o | 4 212 | 19 | 36 |
10 | 新龙县 Xinlong County | 草原杜鹃 Rhododendron telmateium | 31.40o | 99.95o | 4 636 | 17 | 243 |
11 | 炉霍县 Luhuo County | 巴郎柳-川滇柳 Salix sphaeronymphe-Salix rehderiana | 31.72o | 100.72o | 3 697 | 26 | 40 |
12 | 道孚县 Dawu County | 千里香杜鹃 Rhododendron thymifolium | 30.55o | 101.58o | 3 915 | 10 | 18 |
13 | 道孚县 Dawu County | 草原杜鹃 Rhododendron telmateium | 30.53o | 101.58o | 3 947 | 25 | 357 |
14 | 康定县 Kangding County | 草原杜鹃-头花杜鹃 Rhododendron telmateium-Rhododendron capitatum | 30.08o | 101.80o | 4 214 | 0 | 180 |
Table 1 Basic information of sample plots
样地编号 Plot ID | 调查地区 Location | 群落类型 Community type | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 坡度 Slope gradient (o) | 坡向 Slope aspect (o) |
---|---|---|---|---|---|---|---|
1 | 色达县 Sêrtar County | 窄叶鲜卑花 Sibiraea angustata | 31.85o | 100.73o | 3 535 | 21 | 35 |
2 | 炉霍县 Luhuo County | 窄叶鲜卑花 Sibiraea angustata | 31.62o | 100.23o | 3 847 | 20 | 340 |
3 | 甘孜县 Garzê County | 迟花矮柳-硬叶柳 Salix oreinoma-Salix sclerophylla | 31.55o | 99.98o | 3 785 | 16 | 95 |
4 | 甘孜县 Garzê County | 千里香杜鹃 Rhododendron thymifolium | 31.45o | 99.97o | 4 198 | 11 | 340 |
5 | 甘孜县 Garzê County | 草原杜鹃 Rhododendron telmateium | 31.42o | 99.97o | 4 543 | 20 | 265 |
6 | 新龙县 Xinlong County | 千里香杜鹃 Rhododendron thymifolium | 31.38o | 99.92o | 4 115 | 18 | 342 |
7 | 德格县 Dêgê County | 千里香杜鹃 Rhododendron thymifolium | 31.88o | 99.03o | 4 122 | 5 | 190 |
8 | 白玉县 Baiyu County | 草原杜鹃 Rhododendron telmateium | 31.22o | 99.85o | 4 561 | 17 | 237 |
9 | 甘孜县 Garzê County | 窄叶鲜卑花 Sibiraea angustata | 31.45o | 99.97o | 4 212 | 19 | 36 |
10 | 新龙县 Xinlong County | 草原杜鹃 Rhododendron telmateium | 31.40o | 99.95o | 4 636 | 17 | 243 |
11 | 炉霍县 Luhuo County | 巴郎柳-川滇柳 Salix sphaeronymphe-Salix rehderiana | 31.72o | 100.72o | 3 697 | 26 | 40 |
12 | 道孚县 Dawu County | 千里香杜鹃 Rhododendron thymifolium | 30.55o | 101.58o | 3 915 | 10 | 18 |
13 | 道孚县 Dawu County | 草原杜鹃 Rhododendron telmateium | 30.53o | 101.58o | 3 947 | 25 | 357 |
14 | 康定县 Kangding County | 草原杜鹃-头花杜鹃 Rhododendron telmateium-Rhododendron capitatum | 30.08o | 101.80o | 4 214 | 0 | 180 |
样地编号 Plot ID | 灌木层优势种 Dominant species in shrub layer | 灌木层优势种盖度 Dominant species coverage in shrub layer (%) | 灌木层伴生种 Companion species in shrub layer | 灌木层伴生种盖度 Companion species coverage in shrub layer (%) |
---|---|---|---|---|
1 | 窄叶鲜卑花 Sibiraea angustata | 45 | 金露梅 Potentilla fruticasa | 20 |
2 | 窄叶鲜卑花 Sibiraea angustata | 50 | 迟花矮柳 Salix oreinoma | 8 |
3 | 迟花矮柳、硬叶柳 Salix oreinoma, Salix sclerophylla | 50 | 高山绣线菊、金露梅 Spiraea alpina, Potentilla fruticasa | 5 |
4 | 千里香杜鹃 Rhododendron thymifolium | 50 | 迟花矮柳、金露梅 Salix oreinoma, Potentilla fruticasa | 10 |
5 | 草原杜鹃 Rhododendron telmateium | 65 | 头花杜鹃 Rhododendron capitatum | 8 |
6 | 千里香杜鹃 Rhododendron thymifolium | 55 | 高山绣线菊、迟花矮柳 Spiraea alpina, Salix oreinoma | 17 |
7 | 千里香杜鹃 Rhododendron thymifolium | 55 | 迟花矮柳、高山绣线菊、金露梅 Salix oreinoma, Spiraea alpina, Potentilla fruticasa | 12 |
8 | 草原杜鹃 Rhododendron telmateium | 80 | 千里香杜鹃 Rhododendron thymifolium | 5 |
9 | 窄叶鲜卑花 Sibiraea angustata | 58 | 高山绣线菊、迟花矮柳、金露梅 Spiraea alpina, Salix oreinoma, Potentilla fruticasa | 27 |
10 | 草原杜鹃 Rhododendron telmateium | 80 | - | - |
11 | 巴郎柳、川滇柳 Salix sphaeronymphe, Salix rehderiana | 70 | - | - |
12 | 千里香杜鹃 Rhododendron thymifolium | 22 | - | - |
13 | 草原杜鹃 Rhododendron telmateium | 40 | - | - |
14 | 草原杜鹃、头花杜鹃 Rhododendron telmateium, Rhododendron capitatum | 65 | - | - |
Table 2 Species composition in shrub layer
样地编号 Plot ID | 灌木层优势种 Dominant species in shrub layer | 灌木层优势种盖度 Dominant species coverage in shrub layer (%) | 灌木层伴生种 Companion species in shrub layer | 灌木层伴生种盖度 Companion species coverage in shrub layer (%) |
---|---|---|---|---|
1 | 窄叶鲜卑花 Sibiraea angustata | 45 | 金露梅 Potentilla fruticasa | 20 |
2 | 窄叶鲜卑花 Sibiraea angustata | 50 | 迟花矮柳 Salix oreinoma | 8 |
3 | 迟花矮柳、硬叶柳 Salix oreinoma, Salix sclerophylla | 50 | 高山绣线菊、金露梅 Spiraea alpina, Potentilla fruticasa | 5 |
4 | 千里香杜鹃 Rhododendron thymifolium | 50 | 迟花矮柳、金露梅 Salix oreinoma, Potentilla fruticasa | 10 |
5 | 草原杜鹃 Rhododendron telmateium | 65 | 头花杜鹃 Rhododendron capitatum | 8 |
6 | 千里香杜鹃 Rhododendron thymifolium | 55 | 高山绣线菊、迟花矮柳 Spiraea alpina, Salix oreinoma | 17 |
7 | 千里香杜鹃 Rhododendron thymifolium | 55 | 迟花矮柳、高山绣线菊、金露梅 Salix oreinoma, Spiraea alpina, Potentilla fruticasa | 12 |
8 | 草原杜鹃 Rhododendron telmateium | 80 | 千里香杜鹃 Rhododendron thymifolium | 5 |
9 | 窄叶鲜卑花 Sibiraea angustata | 58 | 高山绣线菊、迟花矮柳、金露梅 Spiraea alpina, Salix oreinoma, Potentilla fruticasa | 27 |
10 | 草原杜鹃 Rhododendron telmateium | 80 | - | - |
11 | 巴郎柳、川滇柳 Salix sphaeronymphe, Salix rehderiana | 70 | - | - |
12 | 千里香杜鹃 Rhododendron thymifolium | 22 | - | - |
13 | 草原杜鹃 Rhododendron telmateium | 40 | - | - |
14 | 草原杜鹃、头花杜鹃 Rhododendron telmateium, Rhododendron capitatum | 65 | - | - |
Fig. 1 The height and coverage of shrub layer in different shrub formations (mean ± SE). The formation-type 1 is of Sibiraea angustata; the formation-type 2 is of Salix spp.; the formation-type 3 is of Rhododendron spp. Different letters de- note significantly difference (p < 0.05) within a formation type.
Fig. 2 The biomass allocation pattern in shrub layer of different shrub formations (mean ± SE). The formation-type 1 is of Sibiraea angustata; the formation-type 2 is of Salix spp.; the formation-type 3 is of Rhododendron spp. Different letters denote significantly difference (p < 0.05) within a formation type.
自变量 Independent variable | 因变量 Dependent variable | n | 模型 Model | R2 | F值 F value | p值 p value |
---|---|---|---|---|---|---|
亚高山革叶灌丛与亚高山落叶阔叶灌丛 Combined subalpine leathery-leaved shrubs and subalpine broadleaved deciduous shrubs | ||||||
叶生物量 LB | 茎生物量 SB | 14 | SB = 3.168 × LB | 0.849 | 67.469 | < 0.001 |
叶生物量 LB | 根生物量 RB | 14 | RB = 1.021 + 2.243 × LB | 0.167 | 2.407 | 0.147 |
叶生物量 LB | 灌木层生物量 SLB | 14 | SLB = 1.022 + 6.411 × LB | 0.567 | 15.723 | 0.002 |
茎生物量 SB | 根生物量 RB | 14 | RB = 0.841 + 0.792 × SB | 0.246 | 3.914 | 0.071 |
茎生物量 SB | 灌木层生物量 SLB | 14 | SLB = 0.944 + 2.060 × SB | 0.692 | 26.943 | < 0.001 |
灌木层地上生物量 SAGB | 根生物量 RB | 14 | RB = 0.830 + 0.606 × SAGB | 0.233 | 3.651 | 0.080 |
灌木层地上生物量 SAGB | 灌木层生物量 SLB | 14 | SLB = 0.830 + 1.606 × SAGB | 0.681 | 25.661 | < 0.001 |
根生物量 RB | 灌木层生物量 SLB | 14 | SLB = 1.853 + 1.385 × RB | 0.797 | 47.212 | < 0.001 |
亚高山革叶灌丛 Subalpine leathery-leaved shrubs | ||||||
叶生物量 LB | 茎生物量 SB | 9 | SB = -0.058 + 2.959 × LB | 0.864 | 44.363 | < 0.001 |
叶生物量 LB | 根生物量 RB | 9 | RB = 2.271 - 0.817 × LB | 0.240 | 2.209 | 0.181 |
叶生物量 LB | 灌木层生物量 SLB | 9 | SLB = 2.213 + 3.142 × LB | 0.817 | 31.288 | 0.001 |
茎生物量 SB | 根生物量 RB | 9 | RB = 2.305 - 0.302 × SB | 0.332 | 3.486 | 0.104 |
茎生物量 SB | 灌木层生物量 SLB | 9 | SLB = 2.414 + 0.990 × SB | 0.822 | 32.340 | 0.001 |
灌木层地上生物量 SAGB | 根生物量 RB | 9 | RB = 2.314 - 0.228 × SAGB | 0.317 | 3.250 | 0.114 |
灌木层地上生物量 SAGB | 灌木层生物量 SLB | 9 | SLB = 2.314 + 0.772 × SAGB | 0.843 | 37.457 | < 0.001 |
根生物量 RB | 灌木层生物量 SLB | 9 | SLB = 5.001 - 0.393 × RB | 0.036 | 0.259 | 0.626 |
亚高山落叶阔叶灌丛 Subalpine broadleaved deciduous shrubs | ||||||
叶生物量 LB | 茎生物量 SB | 5 | SB = 0.153 + 3.464 × LB | 0.928 | 38.572 | 0.008 |
叶生物量 LB | 根生物量 RB | 5 | RB = -0.947 + 7.167 × LB | 0.976 | 122.690 | 0.002 |
叶生物量 LB | 灌木层生物量 SLB | 5 | SLB = -0.793 + 11.631 × LB | 0.998 | 1 597.000 | < 0.001 |
茎生物量 SB | 根生物量 RB | 5 | RB = -0.690 + 1.845 × SB | 0.836 | 15.345 | 0.030 |
茎生物量 SB | 灌木层生物量 SLB | 5 | SLB = -0.681 + 3.113 × SB | 0.925 | 36.742 | 0.009 |
灌木层地上生物量 SAGB | 根生物量 RB | 5 | RB = -0.808 + 1.487 × SAGB | 0.877 | 21.374 | 0.019 |
灌木层地上生物量 SAGB | 灌木层生物量 SLB | 5 | SLB = -0.808 + 2.487 × SAGB | 0.952 | 59.773 | 0.004 |
根生物量 RB | 灌木层生物量 SLB | 5 | SLB = 0.877 + 1.590 × RB | 0.981 | 155.382 | 0.001 |
Table 3 The linear correlations between biomass among different organs in shrub layer
自变量 Independent variable | 因变量 Dependent variable | n | 模型 Model | R2 | F值 F value | p值 p value |
---|---|---|---|---|---|---|
亚高山革叶灌丛与亚高山落叶阔叶灌丛 Combined subalpine leathery-leaved shrubs and subalpine broadleaved deciduous shrubs | ||||||
叶生物量 LB | 茎生物量 SB | 14 | SB = 3.168 × LB | 0.849 | 67.469 | < 0.001 |
叶生物量 LB | 根生物量 RB | 14 | RB = 1.021 + 2.243 × LB | 0.167 | 2.407 | 0.147 |
叶生物量 LB | 灌木层生物量 SLB | 14 | SLB = 1.022 + 6.411 × LB | 0.567 | 15.723 | 0.002 |
茎生物量 SB | 根生物量 RB | 14 | RB = 0.841 + 0.792 × SB | 0.246 | 3.914 | 0.071 |
茎生物量 SB | 灌木层生物量 SLB | 14 | SLB = 0.944 + 2.060 × SB | 0.692 | 26.943 | < 0.001 |
灌木层地上生物量 SAGB | 根生物量 RB | 14 | RB = 0.830 + 0.606 × SAGB | 0.233 | 3.651 | 0.080 |
灌木层地上生物量 SAGB | 灌木层生物量 SLB | 14 | SLB = 0.830 + 1.606 × SAGB | 0.681 | 25.661 | < 0.001 |
根生物量 RB | 灌木层生物量 SLB | 14 | SLB = 1.853 + 1.385 × RB | 0.797 | 47.212 | < 0.001 |
亚高山革叶灌丛 Subalpine leathery-leaved shrubs | ||||||
叶生物量 LB | 茎生物量 SB | 9 | SB = -0.058 + 2.959 × LB | 0.864 | 44.363 | < 0.001 |
叶生物量 LB | 根生物量 RB | 9 | RB = 2.271 - 0.817 × LB | 0.240 | 2.209 | 0.181 |
叶生物量 LB | 灌木层生物量 SLB | 9 | SLB = 2.213 + 3.142 × LB | 0.817 | 31.288 | 0.001 |
茎生物量 SB | 根生物量 RB | 9 | RB = 2.305 - 0.302 × SB | 0.332 | 3.486 | 0.104 |
茎生物量 SB | 灌木层生物量 SLB | 9 | SLB = 2.414 + 0.990 × SB | 0.822 | 32.340 | 0.001 |
灌木层地上生物量 SAGB | 根生物量 RB | 9 | RB = 2.314 - 0.228 × SAGB | 0.317 | 3.250 | 0.114 |
灌木层地上生物量 SAGB | 灌木层生物量 SLB | 9 | SLB = 2.314 + 0.772 × SAGB | 0.843 | 37.457 | < 0.001 |
根生物量 RB | 灌木层生物量 SLB | 9 | SLB = 5.001 - 0.393 × RB | 0.036 | 0.259 | 0.626 |
亚高山落叶阔叶灌丛 Subalpine broadleaved deciduous shrubs | ||||||
叶生物量 LB | 茎生物量 SB | 5 | SB = 0.153 + 3.464 × LB | 0.928 | 38.572 | 0.008 |
叶生物量 LB | 根生物量 RB | 5 | RB = -0.947 + 7.167 × LB | 0.976 | 122.690 | 0.002 |
叶生物量 LB | 灌木层生物量 SLB | 5 | SLB = -0.793 + 11.631 × LB | 0.998 | 1 597.000 | < 0.001 |
茎生物量 SB | 根生物量 RB | 5 | RB = -0.690 + 1.845 × SB | 0.836 | 15.345 | 0.030 |
茎生物量 SB | 灌木层生物量 SLB | 5 | SLB = -0.681 + 3.113 × SB | 0.925 | 36.742 | 0.009 |
灌木层地上生物量 SAGB | 根生物量 RB | 5 | RB = -0.808 + 1.487 × SAGB | 0.877 | 21.374 | 0.019 |
灌木层地上生物量 SAGB | 灌木层生物量 SLB | 5 | SLB = -0.808 + 2.487 × SAGB | 0.952 | 59.773 | 0.004 |
根生物量 RB | 灌木层生物量 SLB | 5 | SLB = 0.877 + 1.590 × RB | 0.981 | 155.382 | 0.001 |
Fig. 3 The biomass of different synusias in different shrub formations (mean ± SE). The formation-type 1 is of Sibiraea angustata; the formation-type 2 is of Salix spp.; the formation- type 3 is of Rhododendron spp. Different letters denote significantly difference (p < 0.05) within a formation type.
自变量 Independent variable | 因变量 Dependent variable | n | 模型 Model | R2 | F值 F value | p值 p value | |
---|---|---|---|---|---|---|---|
灌木层生物量 SLB | 草本层生物量 HLB | 14 | HLB = 0.123 + 0.127 × SLB | 0.421 | 8.731 | 0.012 | |
灌木层生物量 SLB | 凋落物层生物量 LLB | 14 | LLB = 0.056 + 0.030 × SLB | 0.330 | 5.910 | 0.032 | |
灌木层生物量 SLB | 总生物量 TB | 14 | TB = 0.179 + 1.157 × SLB | 0.979 | 567.554 | < 0.001 | |
草本层生物量 HLB | 总生物量 TB | 14 | TB = 2.798 + 4.468 × HLB | 0.560 | 15.282 | 0.002 | |
凋落物层生物量 LLB | 总生物量 TB | 14 | TB = 3.336 + 14.053 × LLB | 0.401 | 8.028 | 0.015 | |
叶生物量 LB | 总生物量 TB | 14 | TB = 1.624 + 7.034 × LB | 0.499 | 11.960 | 0.005 | |
茎生物量 SB | 总生物量 TB | 14 | TB = 1.391 + 2.329 × SB | 0.646 | 21.943 | 0.001 | |
根生物量 RB | 总生物量 TB | 14 | TB = 2.235 + 1.638 × RB | 0.815 | 52.796 | < 0.001 | |
灌木层地上生物量 SAGB | 总生物量 TB | 14 | TB = 1.294 + 1.804 × SAGB | 0.629 | 20.334 | 0.001 |
Table 4 The linear correlations among various synusias biomass in shrub communities
自变量 Independent variable | 因变量 Dependent variable | n | 模型 Model | R2 | F值 F value | p值 p value | |
---|---|---|---|---|---|---|---|
灌木层生物量 SLB | 草本层生物量 HLB | 14 | HLB = 0.123 + 0.127 × SLB | 0.421 | 8.731 | 0.012 | |
灌木层生物量 SLB | 凋落物层生物量 LLB | 14 | LLB = 0.056 + 0.030 × SLB | 0.330 | 5.910 | 0.032 | |
灌木层生物量 SLB | 总生物量 TB | 14 | TB = 0.179 + 1.157 × SLB | 0.979 | 567.554 | < 0.001 | |
草本层生物量 HLB | 总生物量 TB | 14 | TB = 2.798 + 4.468 × HLB | 0.560 | 15.282 | 0.002 | |
凋落物层生物量 LLB | 总生物量 TB | 14 | TB = 3.336 + 14.053 × LLB | 0.401 | 8.028 | 0.015 | |
叶生物量 LB | 总生物量 TB | 14 | TB = 1.624 + 7.034 × LB | 0.499 | 11.960 | 0.005 | |
茎生物量 SB | 总生物量 TB | 14 | TB = 1.391 + 2.329 × SB | 0.646 | 21.943 | 0.001 | |
根生物量 RB | 总生物量 TB | 14 | TB = 2.235 + 1.638 × RB | 0.815 | 52.796 | < 0.001 | |
灌木层地上生物量 SAGB | 总生物量 TB | 14 | TB = 1.294 + 1.804 × SAGB | 0.629 | 20.334 | 0.001 |
自变量 Independent variable | 因变量 Dependent variable | n | 模型 Model | R2 | F值 F value | p值 p value |
---|---|---|---|---|---|---|
亚高山革叶灌丛与亚高山落叶阔叶灌丛 Combined subalpine leathery-leaved shrubs and subalpine broadleaved deciduous shrubs | ||||||
地上生物量 AGB | 地下生物量 BGB | 14 | BGB = 0.612 + 0.761 × AGB | 0.324 | 5.765 | 0.033 |
地上生物量 AGB | 总生物量 TB | 14 | TB = 0.719 + 1.796 × AGB | 0.708 | 29.093 | < 0.001 |
地下生物量 BGB | 总生物量 TB | 14 | TB = 1.951 + 1.474 × BGB | 0.851 | 68.631 | < 0.001 |
亚高山革叶灌丛 Subalpine leathery-leaved shrubs | ||||||
地上生物量 AGB | 地下生物量 BGB | 9 | BGB = 2.784 - 0.235 × AGB | 0.296 | 2.946 | 0.130 |
地上生物量 AGB | 总生物量 TB | 9 | TB = 2.978 + 0.752 × AGB | 0.790 | 26.324 | 0.001 |
地下生物量 BGB | 总生物量 TB | 9 | TB = 5.547 - 0.198 × BGB | 0.010 | 0.073 | 0.795 |
亚高山落叶阔叶灌丛 Subalpine broadleaved deciduous shrubs | ||||||
地上生物量 AGB | 地下生物量 BGB | 5 | BGB = -1.184 + 1.572 × AGB | 0.932 | 41.014 | 0.008 |
地上生物量 AGB | 总生物量 TB | 5 | TB = -1.107 + 2.640 × AGB | 0.974 | 112.184 | 0.002 |
地下生物量 BGB | 总生物量 TB | 5 | TB = 1.100 + 1.632 × BGB | 0.988 | 240.323 | 0.001 |
Table 5 The linear correlations between the above- and belowground biomass
自变量 Independent variable | 因变量 Dependent variable | n | 模型 Model | R2 | F值 F value | p值 p value |
---|---|---|---|---|---|---|
亚高山革叶灌丛与亚高山落叶阔叶灌丛 Combined subalpine leathery-leaved shrubs and subalpine broadleaved deciduous shrubs | ||||||
地上生物量 AGB | 地下生物量 BGB | 14 | BGB = 0.612 + 0.761 × AGB | 0.324 | 5.765 | 0.033 |
地上生物量 AGB | 总生物量 TB | 14 | TB = 0.719 + 1.796 × AGB | 0.708 | 29.093 | < 0.001 |
地下生物量 BGB | 总生物量 TB | 14 | TB = 1.951 + 1.474 × BGB | 0.851 | 68.631 | < 0.001 |
亚高山革叶灌丛 Subalpine leathery-leaved shrubs | ||||||
地上生物量 AGB | 地下生物量 BGB | 9 | BGB = 2.784 - 0.235 × AGB | 0.296 | 2.946 | 0.130 |
地上生物量 AGB | 总生物量 TB | 9 | TB = 2.978 + 0.752 × AGB | 0.790 | 26.324 | 0.001 |
地下生物量 BGB | 总生物量 TB | 9 | TB = 5.547 - 0.198 × BGB | 0.010 | 0.073 | 0.795 |
亚高山落叶阔叶灌丛 Subalpine broadleaved deciduous shrubs | ||||||
地上生物量 AGB | 地下生物量 BGB | 5 | BGB = -1.184 + 1.572 × AGB | 0.932 | 41.014 | 0.008 |
地上生物量 AGB | 总生物量 TB | 5 | TB = -1.107 + 2.640 × AGB | 0.974 | 112.184 | 0.002 |
地下生物量 BGB | 总生物量 TB | 5 | TB = 1.100 + 1.632 × BGB | 0.988 | 240.323 | 0.001 |
灌木层碳密度 Shrub layer carbon density | 草本层碳密度 Herb layer carbon density | 凋落物层碳密度 Litter layer carbon density | 总碳密度 Total carbon density | |||
---|---|---|---|---|---|---|
根碳密度 Root carbon density | 茎碳密度 Stem carbon density | 叶碳密度 Leaf carbon density | ||||
地上部分碳密度 Aboveground carbon density | 1.08 (0.67) | 0.34 (0.19) | 0.17 (0.11) | 1.58 (0.90) | ||
地下部分碳密度 Belowground carbon density | 1.27 (1.06) | 0.24 (0.21) | 1.51 (1.21) | |||
总碳密度 Total carbon density | 2.69 (1.65) | 0.40 (0.32) | 0.11 (0.09) | 3.20 (1.93) |
Table 6 Estimation of biomass carbon densities (unit: Mg?hm-2)
灌木层碳密度 Shrub layer carbon density | 草本层碳密度 Herb layer carbon density | 凋落物层碳密度 Litter layer carbon density | 总碳密度 Total carbon density | |||
---|---|---|---|---|---|---|
根碳密度 Root carbon density | 茎碳密度 Stem carbon density | 叶碳密度 Leaf carbon density | ||||
地上部分碳密度 Aboveground carbon density | 1.08 (0.67) | 0.34 (0.19) | 0.17 (0.11) | 1.58 (0.90) | ||
地下部分碳密度 Belowground carbon density | 1.27 (1.06) | 0.24 (0.21) | 1.51 (1.21) | |||
总碳密度 Total carbon density | 2.69 (1.65) | 0.40 (0.32) | 0.11 (0.09) | 3.20 (1.93) |
[1] | Fan QS, Sha ZJ, Cao GC, Cao SK (2005). Assessment of ecology and environments on climate changing of Qinghai- Tibetan Plateau. Journal of Salt Lake Research, 13, 12-18. (in Chinese with English abstract) |
[ 樊启顺, 沙占江, 曹广超, 曹生奎 (2005). 气候变化对青藏高原生态环境的影响评价. 盐湖研究, 13, 12-18.] | |
[2] | Fang JY, Chen AP, Zhao SQ, Ci LJ (2002). Estimating biomass carbon of China’s forests: supplementary notes on report published in Science(291: 2320-2322) by Fang et al. Acta Phytoecologica Sinica 26, 243-249. (in Chinese with English abstract) |
[ 方精云, 陈安平, 赵淑清, 慈龙骏 (2002). 中国森林生物量的估算: 对Fang等Science一文(Science, 2001, 291: 2320-2322)的若干说明. 植物生态学报, 26, 243-249.] | |
[3] | Hao WF, Chen CG, Liang ZS, Ma L (2008). Research advances in vegetation biomass. Journal of Northwest A & F University (Natural Sciences Edition), 36, 175-182. (in Chinese with English abstract) |
[ 郝文芳, 陈存根, 梁宗锁, 马丽 (2008). 植被生物量的研究进展. 西北农林科技大学学报(自然科学版), 36, 175-182.] | |
[4] | Hou L (2009). Carbon Balance in Natural Secondary Pinus tabulaeformis Forest at Huoditang Forest Zone in the Qinling Mountains. PhD dissertation, Northwest A & F University, Yangling, Shaanxi. 24-42. (in Chinese with English abstract) |
[ 侯琳 (2009). 秦岭火地塘林区天然次生油松林碳平衡研究. 博士学位论文, 西北农林科技大学, 陕西杨凌. 24-42.] | |
[5] | Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China. Journal of Plant Ecology, 30, 539-544. (in Chinese with English abstract) |
[ 胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.] | |
[6] | Hu JH, Zeng H (2002). The preliminary analysis of climate resources and ecological agriculture in Garzê Zangzu Autonomous Prefecture. Journal of Sichuan Meteorology, 22, 27-29. (in Chinese) |
[ 胡继华, 曾皓 (2002). 甘孜州气候资源与生态农业的初步分析. 四川气象, 22, 27-29.] | |
[7] | Jin M, Li Y, Wang SL, Zhang XL, Lei L (2012). Alpine shrubs biomass and its distribution characteristics in Qilian Mountains. Arid Land Geography, 35, 952-959. (in Chinese with English abstract) |
[ 金铭, 李毅, 王顺利, 张学龙, 雷蕾 (2012). 祁连山高山灌丛生物量及其分配特征. 干旱区地理, 35, 952-959.] | |
[8] | Lei L, Liu XD, Wang SL, Li Y, Zhang XL (2011). Assignment rule of alpine shrubs biomass and its relationships to environmental factors in Qilian Mountains. Ecology and Environmental Sciences, 20, 1602-1607. (in Chinese with English abstract) |
[ 雷蕾, 刘贤德, 王顺利, 李毅, 张学龙 (2011). 祁连山高山灌丛生物量分配规律及其与环境因子的关系. 生态环境学报, 20, 1602-1607.] | |
[9] | Li KR, Wang SQ, Cao MK (2003). China vegetation and soil carbon storage. Science in China (Series D), 33, 72-80. (in Chinese) |
[ 李克让, 王绍强, 曹明奎 (2003). 中国植被和土壤碳贮量. 中国科学(D辑), 33, 72-80.] | |
[10] | Li WH (2010). Progresses and perspectives of ecological research in China. Journal of Resources and Ecology, 1, 3-14. |
[11] | Liu CQ (1994). The study on techniques in determining shrub phytomass. Acta Prataculturae Sinica, 3(4), 61-65. (in Chinese with English abstract) |
[ 刘存琦 (1994). 灌木植物量测定技术的研究. 草业学报, 3(4), 61-65.] | |
[12] | Liu GH, Ma KM, Fu BJ, Guan WB, Kang YX, Zhou JY, Liu SL (2003). Aboveground biomass of main shrubs in dry valley of Minjiang River. Acta Ecologica Sinica, 23, 1757-1764. (in Chinese with English abstract) |
[ 刘国华, 马克明, 傅伯杰, 关文彬, 康永祥, 周建云, 刘世梁 (2003). 岷江干旱河谷主要灌丛类型地上生物量研究. 生态学报, 23, 1757-1764.] | |
[13] | Liu XL, Hao XD, Yang DS, Liu SR, Su YM, Cai XH, He F, Ma QY (2006a). Aboveground biomass and its models of Quercus aquifolioides thicket community in Balangshan Mountain in Wolong Nature Reserve. Chinese Journal of Ecology, 25, 487-491. (in Chinese with English abstract) |
[ 刘兴良, 郝晓东, 杨冬生, 刘世荣, 宿以明, 蔡小虎, 何飞, 马钦彦 (2006a). 卧龙巴郎山川滇高山栎灌丛地上生物量及其模型. 生态学杂志, 25, 487-491.] | |
[14] | Liu XL, Liu SR, Su YM, Cai XH, Ma QY (2006b). Aboverground biomass of Quercus aquifolioides shrub community and its responses to altitudinal gradients in Balangshan Mountain, Shichuan Province. Scientia Silvae Sinicae, 42(2), 1-7. (in Chinese with English abstract) |
[ 刘兴良, 刘世荣, 宿以明, 蔡小虎, 马钦彦 (2006b). 巴郎山川滇高山栎灌丛地上生物量及其对海拔梯度的响应. 林业科学, 42(2), 1-7.] | |
[15] | Liu YG, Peng PH, Chen WD, Wang YK (2009). Study on the vegetation landscape pattern of Ganzi Tibetan Autonomous Prefecture in Sichuan Province. Journal of Landscape Research, 1(6), 43-48. (in Chinese and English) |
[ 刘延国, 彭培好, 陈文德, 王玉宽 (2009). 四川甘孜藏族自治州植被景观格局分析研究. 景观研究, 1(6), 43-48.] | |
[16] | Lu ZL, Gong XS (2009). Progress on the research of shrub biomass estimation. Forest Inventory and Planning, 34(4), 37-45. (in Chinese with English abstract) |
[ 卢振龙, 龚孝生 (2009). 灌木生物量测定的研究进展. 林业调查规划, 34(4), 37-45.] | |
[17] |
Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1014.
DOI URL PMID |
[18] | Piao SL, Fang JY, Huang Y (2010). The carbon balance of terrestrial ecosystems in China. China Basic Science, 12(2), 20-22. (in Chinese with English abstract) |
[ 朴世龙, 方精云, 黄耀 (2010). 中国陆地生态系统碳收支. 中国基础科学, 12(2), 20-22.] | |
[19] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. |
[20] | Song YC (2001). Vegetation Ecology. East China Normal University Press, Shanghai. 353-422. (in Chinese) |
[ 宋永昌 (2001). 植被生态学. 华东师范大学出版社, 上海. 353-422.] | |
[21] |
Sturm M, Racine C, Tape K (2001). Increasing shrub abundance in the Arctic. Nature, 411, 546-547.
URL PMID |
[22] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences((2001). Vegetation Map of the People’s Republic of China 1:1000000. Science Press, Beijing. (in Chinese) |
[ 中国科学院中国植被图编辑委员会 (2001). 1:1000000中国植被图. 科学出版社, 北京.] | |
[23] | Wang L (2009). Study of Biomass and Its Models of Main Shrub Community Type in Northwest Sichuan. Master degree dissertation, Sichuan Agricultural University,Yaan, Sichuan. 1-40. (in Chinese) |
[ 王玲 (2009). 川西北地区主要灌丛类型生物量及其模型的研究. 硕士学位论文, 四川农业大学, 四川雅安. 1-40.] | |
[24] | Wu YQ, Liu GH, Fu BJ, Guo YH (2008). Study on the vertical distribution of soil organic carbon density in the Tibetan Plateau. Acta Scientiae Circumstantiae, 28, 362-367. (in Chinese with English abstract) |
[ 吴雅琼, 刘国华, 傅伯杰, 郭玉华 (2008). 青藏高原土壤有机碳密度垂直分布研究. 环境科学学报, 28, 362-367.] | |
[25] | Xie XL, Sun B, Zhou HZ, Li ZP (2004). Soil carbon stocks and their influencing factors under native vegetations in China. Acta Pedologica Sinica, 41, 687-699. (in Chinese with English abstract) |
[ 解宪丽, 孙波, 周慧珍, 李忠佩 (2004). 不同植被下中国土壤有机碳的储量与影响因子. 土壤学报, 41, 687-699.] | |
[26] | Yang YH, Fang JY, Ji CJ, Han WX (2009). Above- and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science, 20, 177-184. |
[27] | Yu HY, Xu JC (2009). Effects of climate change on vegetations on Qinghai-Tibet Plateau: a review. Chinese Journal of Ecology, 28, 747-754. (in Chinese with English abstract) |
[ 于海英, 许建初 (2009). 气候变化对青藏高原植被影响研究综述. 生态学杂志, 28, 747-754.] | |
[28] | Yu YD, Liu LH, Zhang JH (1989). Vegetation regionalization of the Hengduan Mountainous Region. Mountain Research, 7, 47-55. (in Chinese with English abstract) |
[ 余有德, 刘伦辉, 张建华 (1989). 横断山区植被分区. 山地研究, 7, 47-55.] | |
[29] | Zeng ZY, Liu QJ, Zhang JP, Zeng HQ, Cai Z (2005). A study on the pertinence of measure factors and organic biomass of shrub. Acta Agriculturae Universitatis Jiangxiensis, 27, 694-699. (in Chinese with English abstract) |
[ 曾珍英, 刘琪璟, 张建萍, 曾慧卿, 蔡哲 (2005). 灌木各测树因子相关性以及器官生物量相关性的研究. 江西农业大学学报, 27, 694-699.] | |
[30] | Zhang FH, He F, He YP, Fan H, Jiang TL (2008). The influencing factors and protection of biodiversity in Western Sichuan. Journal of Sichuan Forestry Science and Technology, 29(6), 45-51. (in Chinese) |
[ 张发会, 何飞, 何亚平, 樊华, 降廷伦 (2008). 川西生物多样性的影响因素及其保护对策. 四川林业科技, 29(6), 45-51.] | |
[31] | Zhang XH, Zhang YD, Gu FX, Liu SR (2011). Dynamics of shrubs normalized difference vegetation index and its correlations with climatic factors in Southwest China. Chinese Journal of Ecology, 30, 2577-2583. (in Chinese with English abstract) |
[ 张笑鹤, 张远东, 顾峰雪, 刘世荣 (2011). 西南地区灌丛归一化植被指数动态及其与气候因子的相关性. 生态学杂志, 30, 2577-2583.] | |
[32] | Zhang XS (1978). The plateau zonality of vegetation in Xizang. Acta Botanica Sinica, 20, 140-149. (in Chinese with English abstract) |
[ 张新时 (1978). 西藏植被的高原地带性. 植物学报, 20, 140-149.] | |
[33] | Zhou HK, Zhou L, Zhao XQ, Shen ZX, Li YN, Zhou XM, Yan ZL, Liu W (2002). Study of formation pattern of below- ground biomass in Potentilla fruticosa shrub. Acta Prataculturae Sinica, 11(2), 59-65. (in Chinese with English abstract) |
[ 周华坤, 周立, 赵新全, 沈振西, 李英年, 周兴民, 严作良, 刘伟 (2002). 金露梅灌丛地下生物量形成规律的研究. 草业学报, 11(2), 59-65.] |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[8] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[9] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[10] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[11] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[12] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[13] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[14] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[15] | LI Bian-Bian, ZHANG Feng-Hua, ZHAO Ya-Guang, SUN Bing-Nan. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus [J]. Chin J Plant Ecol, 2023, 47(1): 101-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn