Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (11): 1585-1599.DOI: 10.17521/cjpe.2022.0244
Special Issue: 稳定同位素生态学; 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
ZHANG Xiao1, WU Juan-Juan1, JIA Guo-Dong1,2,*(), LEI Zi-Ran1, ZHANG Long-Qi1, LIU Rui1, LÜ Xiang-Rong1, DAI Yuan-Meng1
Received:
2022-06-10
Accepted:
2022-12-03
Online:
2023-11-20
Published:
2023-12-22
Contact:
JIA Guo-Dong(Supported by:
ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis[J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0244
Fig. 1 Diagram of precipitation control experiment of Platycladus orientalis plantation in Beijing mountain area. EB, double precipitation; WU, no precipitation; YB, half of the precipitation; ZR, natural precipitation.
处理 Treatment | 样树编号 Sample tree No. | 胸径 DBH (cm) | 边材面积 Sapwood area (cm2) | 树高 Tree height (m) |
---|---|---|---|---|
WU | 1-3 | 13.38 ± 0.47 | 197.27 ± 14.54 | 16.08 ± 0.63 |
YB | 4-6 | 13.33 ± 0.26 | 195.36 ± 8.05 | 16.95 ± 1.78 |
ZR | 7-9 | 13.30 ± 0.36 | 194.48 ± 11.04 | 15.36 ± 0.61 |
EB | 10-12 | 13.39 ± 0.50 | 197.56 ± 15.13 | 17.25 ± 0.79 |
Table 1 Trees of Platycladus orientalis for sap flow measurements in the rocky mountainous area of Beijing (mean ± SE)
处理 Treatment | 样树编号 Sample tree No. | 胸径 DBH (cm) | 边材面积 Sapwood area (cm2) | 树高 Tree height (m) |
---|---|---|---|---|
WU | 1-3 | 13.38 ± 0.47 | 197.27 ± 14.54 | 16.08 ± 0.63 |
YB | 4-6 | 13.33 ± 0.26 | 195.36 ± 8.05 | 16.95 ± 1.78 |
ZR | 7-9 | 13.30 ± 0.36 | 194.48 ± 11.04 | 15.36 ± 0.61 |
EB | 10-12 | 13.39 ± 0.50 | 197.56 ± 15.13 | 17.25 ± 0.79 |
Fig. 2 Daily variation of soil water content and meteorological factors during observation of Platycladus orientalis plantation in the rocky mountainous area of Beijing.
Fig. 3 Diurnal variation of daily sap flow and precipitation of Platycladus orientalis under four precipitation treatments. A, No precipitation. B, Half of the precipitation. C, Natural precipitation. D, Double precipitation.
Fig. 5 Sap flow (Q) of Platycladus orientalis under different treatments before and after 6 precipitation events during the observation period (mean ± SE). A, 9 August. B, 14 August. C, 19 August. D, 4 September. E, 14 September. F, 19 September. Different uppercase letters indicate significant difference before and after precipitation in the same treatment, and different lowercase letters indicate significant difference before or after precipitation in different treatments (p < 0.05). EB, double precipitation; WU, no precipitation; YB, half of the precipitation; ZR, natural precipitation.
Fig. 6 Changes of soil water content before and after three precipitation events in Beijing mountain area (mean ± SE). A, 14 September. B, 19 August. C, 19 September. YH, after precipitation; YQ, before precipitation. SWC-H, period of relatively high soil moisture (REW ≥ 0.4); SWC-L, period of relatively low soil moisture (REW < 0.4). EB, double precipitation; WU, no precipitation; YB, half of the precipitation; ZR, natural precipitation.
Fig. 7 Residual contribution rate of environmental factors to flow density of Platycladus orientalis under four water control treatments before and after three precipitationl event. A, 14 September. B, 19 August. C, 19 September. Rs, solar radiation; VPD, vapor pressure deficit; WS, wind speed. YH, after precipitation; YQ, before precipitation. EB, double precipitation; WU, no precipitation; YB, half of the precipitation; ZR, natural precipitation.
Fig. 8 Contribution rate of different water sources to Platycladus orientalis before and after precipitation on September 4. EB, double precipitation; WU, no precipitation; YB, half of the precipitation; ZR, natural precipitation. REW, relative effective water content of soil; YH, after precipitation; YQ, before precipitation.
[1] |
Barbeta A, Jones SP, Clavé L, Wingate L, Gimeno TE, Fréjaville B, Wohl S, Ogée J (2019). Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest. Hydrology and Earth System Sciences, 23, 2129-2146.
DOI |
[2] |
Besson CK, Lobo-do-Vale R, Rodrigues ML, Almeida P, Herd A, Grant OM, David TS, Schmidt M, Otieno D, Keenan TF, Gouveia C, Mériaux C, Chaves M, Pereira JS (2014). Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agricultural and Forest Meteorology, 184, 230-242.
DOI URL |
[3] |
Bosch DD, Marshall LK, Teskey R (2014). Forest transpiration from sap flux density measurements in a Southeastern Coastal Plain riparian buffer system. Agricultural and Forest Meteorology, 187, 72-82.
DOI URL |
[4] |
Brinkmann N, Eugster W, Zweifel R, Buchmann N, Kahmen A (2016). Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiology, 36, 1508-1519.
PMID |
[5] |
Chen DY, Wang YK, Liu SY, Wei XG, Wang X (2014). Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China. Agricultural Water Management, 136, 23-33.
DOI URL |
[6] | Gao C, Yang XB, Lu SW, Li SN, Chen B, Pan QH, Ma CD (2014). Strategies on water utilization of poplar plantation ecosystem in Beijing sandy area. Journal of Northeast Forestry University, 42(1), 80-85. |
[高琛, 杨新兵, 鲁绍伟, 李少宁, 陈波, 潘青华, 马成东 (2014). 北京沙地杨树人工林生态系统水分利用策略. 东北林业大学学报, 42(1), 80-85.] | |
[7] |
Gessler A, Bächli L, Rouholahnejad Freund E, Treydte K, Schaub M, Haeni M, Weiler M, Seeger S, Marshall J, Hug C, Zweifel R, Hagedorn F, Rigling A, Saurer M, Meusburger K (2022). Drought reduces water uptake in beech from the drying topsoil, but no compensatory uptake occurs from deeper soil layers. New Phytologist, 233, 194-206.
DOI URL |
[8] |
Gessler A, Keitel C, Nahm M, Rennenberg H (2004). Water shortage affects the water and nitrogen balance in Central European beech forests. Plant Biology, 6, 289-298.
PMID |
[9] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI PMID |
[10] |
Granier A, Biron P, Lemoine D (2000). Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 100, 291-308.
DOI URL |
[11] |
Guerrieri, Rossella (2019). Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proceedings of the National Academy of Sciences of the United States of America, 116, 16909-16914.
DOI PMID |
[12] | Han L, He J, Qi TY, Tian J, Sun ZJ, Zhan XL (2018). Response and simulation of canopy stomatal conductance of Platycladus orientalis to environmental factors in Hedong sandy region of Ningxia. Journal of Ecology, 37, 2862-2868. |
[韩磊, 何俊, 齐拓野, 田佳, 孙兆军, 展秀丽 (2018). 宁夏河东沙区侧柏冠层气孔导度对环境因子的响应及其模拟. 生态学杂志, 37, 2862-2868.] | |
[13] | He QY (2020). Transpiration Characteristics of a Black Locust Plantation in Response to Rairfall Reduction in the Sub-humid Region of Loess Plateau, China. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. |
[何秋月 (2020).黄土高原半湿润区刺槐人工林蒸腾耗水特征对降雨减少的响应. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[14] |
Jackson PC, Cavelier J, Goldstein G, Meinzer FC, Holbrook NM (1995). Partitioning of water resources among plants of a lowland tropical forest. Oecologia, 101, 197-203.
DOI PMID |
[15] | Jiang T, Zheng WG, Yu XX, Jia GD, Ba Heti ZE, Zhang H, Wang YS, Wang YP, Ding BB (2022). Leaf water absorption of Platycladus orientalis under drought stress in Beijing. Acta Ecologica Sinica, 42, 1429-1440. |
[蒋涛, 郑文革, 余新晓, 贾国栋, 孜尔蝶·巴合提, 张欢, 王渝淞, 王玥璞, 丁兵兵 (2022). 北京山区干旱胁迫下侧柏叶片水分吸收策略. 生态学报, 42, 1429-1440.] | |
[16] |
Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS, Ewers BE, Peters DP, Young DR, Shaver GR, Pendall E, Cleary MB (2008). Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615-623.
DOI URL |
[17] | Kong Z, Chen SN, Lv J, Chen LX, Zhang ZQ (2020). Characteristics of Populus euramericana sap flow over day and night and its influencing factors. Scientia Silvae Sinicae, 56(3), 8-20. |
[孔喆, 陈胜楠, 律江, 陈立欣, 张志强 (2020). 欧美杨单株液流昼夜组成及其影响因素分析. 林业科学, 56(3), 8-20.] | |
[18] | Leen JB, Berman ESF, Liebson L, Gupta M (2012). Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes. Review of Scientific Instruments, 83, 044305. DOI: 10.1063/1.4704843. |
[19] |
Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R (2009). Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change Biology, 15, 2163-2175.
DOI URL |
[20] | Liu WN (2019). Studies of Platycladus orientalis Stomatal Conductance and Its Regulation on Canopy Transpiration in Beijing Mountainous Area. Master degree dissertation, Beijing Forestry University, Beijing. |
[刘文娜 (2019). 北京山区侧柏林冠层气孔导度及其对冠层蒸腾调控的研究. 硕士学位论文, 北京林业大学, 北京.] | |
[21] | Liu ZQ (2019). Water Migration Process and Utilization Mechanism of Typical Trees in North China. PhD dissertation, Beijing Forestry University, Beijing. |
[刘自强 (2019). 华北地区典型林木水分运移过程与利用机制研究. 博士学位论文, 北京林业大学, 北京.] | |
[22] | Liu ZQ, Yu XX, Jia GD, Li HZ, Lu WW, Hou GR (2018). Response to precipitation in water sources for Platycladus orientalis in Beijing mountain area. Scientia Silvae Sinicae, 54(7), 16-23. |
[刘自强, 余新晓, 贾国栋, 李瀚之, 路伟伟, 侯贵荣 (2018). 北京山区侧柏利用水分来源对降水的响应. 林业科学, 54(7), 16-23.] | |
[23] | Lu SB, Chen YM, Tang YK, Wu X, Wen J (2017). Sap flux density in response to rainfall pulses for Pinus tabuliformis and Hippophae rhamnoides from mixed plantation in hilly Loess Plateau. Chinese Journal of Applied Ecology, 28, 3469-3478. |
[卢森堡, 陈云明, 唐亚坤, 吴旭, 温杰 (2017). 黄土丘陵区混交林中油松和沙棘树干液流对降雨脉冲的响应. 应用生态学报, 28, 3469-3478.]
DOI |
|
[24] |
Luo C, Zha TG, Zhu MX, Zhu ZJ, Wang ZY, Liu WN (2016). Influences of shallow groundwater on sap flow of riparian poplar plantations in Northern China. Chinese Journal of Applied Ecology, 27, 1401-1407.
DOI |
[罗超, 查同刚, 朱梦洵, 朱志俊, 王子尧, 刘文娜 (2016). 浅层地下水对华北地区河岸杨树林树干液流的影响. 应用生态学报, 27, 1401-1407.]
DOI |
|
[25] | Lyu JL, He QY, Yan MJ, Li GQ, Du S (2018). Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China. Chinese Journal of Applied Ecology, 29, 725-731. |
[吕金林, 何秋月, 闫美杰, 李国庆, 杜盛 (2018). 黄土丘陵区辽东栎树干液流特征对边材面积和土壤水分的响应. 应用生态学报, 29, 725-731.]
DOI |
|
[26] | Ma CK, Luo Y, Shao MG, Li XD, Sun L, Jia XX (2017). Environmental controls on sap flow in black locust forest in Loess Plateau, China. Scientific Reports, 7, 13160. DOI: 10.10381/s41598-017-13532-8. |
[27] |
Martín-Gómez P, Barbeta A, Voltas J, Peñuelas J, Dennis K, Palacio S, Dawson TE, Ferrio JP (2015). Isotope-ratio infrared spectroscopy: a reliable tool for the investigation of plant-water sources. New Phytologist, 207, 914-927.
DOI PMID |
[28] |
Meinzer FC, Andrade JL, Goldstein G, Cavelier J (1999). Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia, 121, 293-301.
DOI PMID |
[29] | Pan D, Bi HX, Cirenquxi, Wang LL, Gao LB, Xu HS, Bao B (2013). Relationship between environmental factors and water consumption regularity of typical forest vegetation in loess region of western Shanxi Province, Northern China. Journal of Beijing Forestry University, 35(4), 16-20. |
[潘迪, 毕华兴, 次仁曲西, 王莉莉, 高路博, 许华森, 鲍彪 (2013). 晋西黄土区典型森林植被耗水规律与环境因子关系研究. 北京林业大学学报, 35(4), 16-20.] | |
[30] |
Porporato A, Daly E, Rodriguez-Iturbe I (2004). Soil water balance and ecosystem response to climate change. The American Naturalist, 164, 625-632.
PMID |
[31] |
Schultz NM, Griffis TJ, Lee XH, Baker JM (2011). Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water. Rapid Communications in Mass Spectrometry, 25, 3360-3368.
DOI URL |
[32] |
Schwendenmann L, Pendall E, Sanchez-Bragado R, Kunert N, Hölscher D (2015). Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology, 8, 1-12.
DOI URL |
[33] | Stock BC, Jackson AL, Ward EJ, Parnell AC, Semmens BX (2018). Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ, 6, e5096. DOI: 10.7287/peerj.preprints.26884. |
[34] |
Wang X, Jia GD, Deng WP, Liu ZQ, Liu ZH, Qiu GF, Li WL (2021). Long-term water use characteristics and patterns of typical tree species in seasonal drought regions. Chinese Journal of Applied Ecology, 32, 1943-1950.
DOI |
[王欣, 贾国栋, 邓文平, 刘自强, 刘子赫, 邱贵福, 李文立 (2021). 季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 32, 1943-1950.]
DOI |
|
[35] | Wang Y, Wang J (2012). Research progress of plant sap flow. Anhui Agricultural Science Bulletin, 18, 49-50. |
[汪滢, 王健 (2012). 植物液流研究进展. 安徽农学通报, 18, 49-50.] | |
[36] | Wang Y, Wei JS, Liu BB, Zhou M (2021). Effect of environmental factors on characteristics of sap flow of Betula platyphylla in southern Daxing’an Mountains. Journal of Northeast Forestry University, 49(2), 11-17. |
[王媛, 魏江生, 刘兵兵, 周梅 (2021). 环境因子对大兴安岭南段白桦树干液流变化特征的影响. 东北林业大学学报, 49(2), 11-17.] | |
[37] | Wang Y, Wei JS, Zhou M, Zhao PW, Liu BB (2020). Response of sap flow of Betula platyphylla to soil moisture in southern Greater Xing’an Mountains. Research of Soil and Water Conservation, 27(4), 128-133. |
[王媛, 魏江生, 周梅, 赵鹏武, 刘兵兵 (2020). 大兴安岭南段白桦树干液流对土壤水分的响应. 水土保持研究, 27(4), 128-133.] | |
[38] | Wightman M, Martin T, Gonzalez-Benecke C, Jokela E, Cropper Jr. W, Ward E (2016). Loblolly pine productivity and water relations in response to throughfall reduction and fertilizer application on a poorly drained site in northern Florida. Forests, 7, 214. DOI: 10.3390/f7100214. |
[39] | Williams DG, Ehleringer JR (2000). Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70, 517-537. |
[40] |
Wu X, Chen YM, Tang YK (2015). Sap flow characteristics and its responses to precipitation in Robinia pseudoacacia and Platycladus orientalis plantations. Chinese Journal of Plant Ecology, 39, 1176-1187.
DOI URL |
[吴旭, 陈云明, 唐亚坤 (2015). 黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应. 植物生态学报, 39, 1176-1187.]
DOI |
|
[41] |
Wullschleger SD, Hanson PJ (2006). Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: evidence from a long-term field manipulation study. Global Change Biology, 12, 97-109.
DOI URL |
[42] | Xia YH, Zhang XP, Dai JJ, Wang R, Luo ZD (2021). Response of stem sap flow of Cinnamomum camphora to precipitation under different environments in the subtropical monsoon region. Research of Soil and Water Conservation, 28(6), 144-152. |
[夏银华, 章新平, 戴军杰, 王锐, 罗紫东 (2021). 亚热带季风区樟树树干液流对降水的响应. 水土保持研究, 28(6), 144-152.] | |
[43] | Zhang HL, Ding YL, Chen HS, Wang KL, Nie YP (2018). Responses of sap flow to natural rainfall and continuous drought of tree species growing on bedrock outcrops. Chinese Journal of Applied Ecology, 29, 1117-1124. |
[张慧玲, 丁亚丽, 陈洪松, 王克林, 聂云鹏 (2018). 出露基岩生境典型植物树干液流对自然降水和连续干旱的响应特征. 应用生态学报, 29, 1117-1124.]
DOI |
|
[44] |
Zhang JG, He QY, Shi WY, Otsuki K, Yamanaka N, Du S (2015). Radial variations in xylem sap flow and their effect on whole-tree water use estimates. Hydrological Processes, 29, 4993-5002.
DOI URL |
[45] | Zhang L, Sun PS, Liu SR (2009). A review on water use responses of tree/forest stand to environmental changes by using sapflow techniques. Acta Ecologica Sinica, 29, 5600-5610. |
[张雷, 孙鹏森, 刘世荣 (2009). 树干液流对环境变化响应研究进展. 生态学报, 29, 5600-5610.] | |
[46] | Zhao N, Meng P, He YB, Lou YH, Yu XX (2017). Response of water sources in Platycladus orientalis and Vitex negundo var. heterophylla system to precipitation events in mountain area of Beijing, China. Chinese Journal of Applied Ecology, 28, 2155-2163. |
[赵娜, 孟平, 何雅冰, 娄源海, 余新晓 (2017). 北京山区侧柏-荆条系统水分来源对降雨事件的响应. 应用生态学报, 28, 2155-2163.]
DOI |
|
[47] |
Zhao W, Liu B (2010). The response of sap flow in shrubs to rainfall pulses in the desert region of China. Agricultural and Forest Meteorology, 150, 1297-1306.
DOI URL |
[48] |
Zhao WQ, Xi BY, Liu JQ, Liu Y, Zou SY, Song WY, Chen LX (2021). Transpiration process and environmental response of poplar plantation under different irrigation conditions. Chinese Journal of Plant Ecology, 45, 370-382.
DOI URL |
[赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣 (2021). 不同灌溉条件下杨树人工林蒸腾过程及环境响应. 植物生态学报, 45, 370-382.] | |
[49] | Zheng PF, Yu XX, Jia GD, Liu ZQ, Zhang YE, Zhu XH (2019). Water use efficiency and its influencing factors of Platycladus orientalis plantation in Beijing mountains area, China. Chinese Journal of Applied Ecology, 30, 727-734. |
[郑鹏飞, 余新晓, 贾国栋, 刘自强, 张永娥, 朱栩辉 (2019). 北京山区侧柏人工林水分利用效率及其影响因素. 应用生态学报, 30, 727-734.]
DOI |
|
[50] |
Zhou H, Zhao WZ, Zheng XJ, Li SJ (2015). Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat. Journal of Plant Research, 128, 613-622.
DOI PMID |
[1] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[2] | Zumureti YUSUFUJANG, DONG Zheng-Wu, CHENG Peng, YE Mao, LIU Sui-Yun-Hao, LI Sheng-Yu, ZHAO Xiao-Ying. Response of water use strategies of Tamarix ramosissima to nebkhas accumulation process [J]. Chin J Plant Ecol, 2024, 48(1): 113-126. |
[3] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[4] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[5] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[6] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[7] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[8] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[9] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[10] | HUANG Jie, LI Xiao-Ling, WANG Xue-Song, YANG Jin, HUANG Cheng-Ming. Characteristics of Distylium chinense communities and their relationships with soil environmental factors in different water level fluctuation zones of the Three Gorges Reservoir, China [J]. Chin J Plant Ecol, 2021, 45(8): 844-859. |
[11] | LUO Ming-Mo, CHEN Yue, YANG Gang, HU Bin, LI Wei, CHEN Huai. Short-term response of soil prokaryotic community structure to water level restoration in degraded peatland of the Zoigê Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 552-561. |
[12] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[13] | ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions [J]. Chin J Plant Ecol, 2021, 45(4): 370-382. |
[14] | LI Yuan-Yuan, ZHANG Yun, KONG Zhao-Chen, YANG Zhen-Jing. Surface sporopollen and modern vegetation in Hongshanzui area, Altai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(2): 174-186. |
[15] | LIU Ling, FAN Ying-Jie, SONG Xiao-Tong, LI Min, SHAO Xiao-Ming, WANG Xiao-Rui. Bryophyte societies on the fallen logs of Pinus armandii with different decay classes in Sygera Mountains [J]. Chin J Plant Ecol, 2020, 44(8): 842-853. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn