植物生态学报 ›› 2017, Vol. 41 ›› Issue (1): 71-80.DOI: 10.17521/cjpe.2016.0093
所属专题: 中国灌丛生态系统碳储量的研究
张建华1,2,*(), 唐志尧3, 沈海花2, 方精云2,3
收稿日期:
2016-03-11
接受日期:
2016-09-21
出版日期:
2017-01-10
发布日期:
2017-01-23
通讯作者:
张建华
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Jian-Hua ZHANG1,2,*(), Zhi-Yao TANG3, Hai-Hua SHEN2, Jing-Yun FANG2,3
Received:
2016-03-11
Accepted:
2016-09-21
Online:
2017-01-10
Published:
2017-01-23
Contact:
Jian-Hua ZHANG
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
我国北方灌丛土壤瘠薄, 近几十年来的氮沉降显著提高了北方灌丛土壤的可利用氮水平。灌木生长是灌丛碳吸存的重要组成部分, 凋落物在土壤和植物间充当着至关重要的纽带作用, 是陆地生态系统养分与能量循环的关键, 灌丛生长和凋落物生产受氮添加的影响很大。然而, 大气氮沉降对灌丛碳吸存和凋落物生产的影响人们知之甚少。该研究以荆条(Vitex negundo var. heterophylla)和绣线菊(Spiraea salicifolia)灌丛为例, 通过0 (N0)、20 (N1)、50 (N2)、100 (N3) kg N·hm-2·a-1施氮实验, 研究了短期(2012-2013年)氮添加对东灵山地区典型灌丛生长及凋落物生成的影响。研究结果显示: 在4种氮添加处理中, 荆条灌丛灌木基径年增长率分别为1.69%、2.78%、2.51%和1.80%, 相应处理中, 绣线菊灌丛灌木基径年增长率分别为1.38%、1.37%、1.59%和2.05%; 与之对应的株高年增长率分别为8.36%、8.48%、9.49%和9.83% (荆条灌丛)和2.12%、2.86、2.36%、2.52% (绣线菊灌丛)。虽然处理之间的差异没有达到显著性水平, 但N沉降在一定程度上促进了灌木的生长。不同处理间, 荆条地上生物量增加了0.19、0.23、0.14、0.15 t C·hm-2·a-1, 绣线菊灌丛地上生物量增加了0.027、0.025、0.032、0.041 t C·hm-2·a-1。在自然条件下, 荆条和绣线菊灌丛2013年凋落物的年产量分别为135.7和129.6 g·m-2。短期氮沉降对凋落物及组分的年产量有一定的促进作用, 但处理之间的差异没有达到显著性水平。研究结果表明施肥时间短、土壤含水量低等因素导致土壤可利用氮的利用效率很低, 从而使灌丛对施肥的响应比较缓慢。
张建华, 唐志尧, 沈海花, 方精云. 北京东灵山地区常见灌丛生长及凋落物生产对氮添加的响应. 植物生态学报, 2017, 41(1): 71-80. DOI: 10.17521/cjpe.2016.0093
Jian-Hua ZHANG, Zhi-Yao TANG, Hai-Hua SHEN, Jing-Yun FANG. Responses of growth and litterfall production to nitrogen addition treatments from common shrublands in Mt. Dongling, Beijing, China. Chinese Journal of Plant Ecology, 2017, 41(1): 71-80. DOI: 10.17521/cjpe.2016.0093
项目 Item | 荆条灌丛 Vitex negundo var. heterophylla shrubland | 绣线菊灌丛 Spiraea salicifolia shrubland |
---|---|---|
地形和气候 Topography and climate | ||
海拔 Elevation (m) | 791 | 1 170 |
坡向 Aspect | S | S |
坡度 Slope (°) | 28 | 25 |
年平均气温 Mean annual temperature (°C) | 12.3 | 9.2 |
表层土壤特征 Topsoil property | ||
土壤pH Soil pH | 8.7 | 8.9 |
总碳含量 Total carbon (mg·g -1) | 28.88 ± 2.10 | 39.50 ± 5.03 |
总氮含量 Total nitrogen (mg·g -1) | 2.72 ± 0.32 | 2.29 ± 0.36 |
总磷含量 Total phosphorous (mg·g -1) | 0.47 ± 0.04 | 0.48 ± 0.03 |
无机氮含量 Inorganic nitrogen (mg·kg -1) | 6.01 ± 2.38 | 2.51 ± 2.88 |
速效磷含量 Available phosphorous (mg·kg -1) | 1.03 ± 0.09 | 1.38 ± 0.77 |
群落特征 Community character | ||
灌木高度 Shrub height (cm) | 78.10 ± 12.37 | 79.80 ± 7.43 |
平均基径 Average base diameter (cm) | 0.77 ± 1.77 | 0.56 ± 0.04 |
灌木密度 Shrub density (stems·hm-2) | 1.6 × 105 | 3.6 × 105 |
表1 实验样地地形、土壤和植被特征(平均值±标准误差, n = 3)
Table 1 Topography, soil and vegetation characteristics of the experimental sites (mean ± SE, n = 3)
项目 Item | 荆条灌丛 Vitex negundo var. heterophylla shrubland | 绣线菊灌丛 Spiraea salicifolia shrubland |
---|---|---|
地形和气候 Topography and climate | ||
海拔 Elevation (m) | 791 | 1 170 |
坡向 Aspect | S | S |
坡度 Slope (°) | 28 | 25 |
年平均气温 Mean annual temperature (°C) | 12.3 | 9.2 |
表层土壤特征 Topsoil property | ||
土壤pH Soil pH | 8.7 | 8.9 |
总碳含量 Total carbon (mg·g -1) | 28.88 ± 2.10 | 39.50 ± 5.03 |
总氮含量 Total nitrogen (mg·g -1) | 2.72 ± 0.32 | 2.29 ± 0.36 |
总磷含量 Total phosphorous (mg·g -1) | 0.47 ± 0.04 | 0.48 ± 0.03 |
无机氮含量 Inorganic nitrogen (mg·kg -1) | 6.01 ± 2.38 | 2.51 ± 2.88 |
速效磷含量 Available phosphorous (mg·kg -1) | 1.03 ± 0.09 | 1.38 ± 0.77 |
群落特征 Community character | ||
灌木高度 Shrub height (cm) | 78.10 ± 12.37 | 79.80 ± 7.43 |
平均基径 Average base diameter (cm) | 0.77 ± 1.77 | 0.56 ± 0.04 |
灌木密度 Shrub density (stems·hm-2) | 1.6 × 105 | 3.6 × 105 |
物种 Species | 器官 Organ | 变量 Variable | R2 | 方程 Equation |
---|---|---|---|---|
山杏 | 根 Root | D2H | 0.81 | y = 1.26x0.77 |
Armeniaca sibirica | 枝 Branch | D2H | 0.94 | y = 1.09x0.79 |
叶 Leaf | D2H | 0.87 | y = 1.61x0.56 | |
总计 Total | D2H | 0.95 | y = 3.53x0.74 | |
小叶白蜡 | 根 Root | D2H | 0.88 | y = 0.2x0.91 |
Fraxinus bungeana | 枝 Branch | D2H | 0.50 | y = 5.47x0.51 |
叶 Leaf | D2H | 0.77 | y = 0.13x0.8 | |
总计 Total | D2H | 0.72 | y = 4.47x0.62 | |
小叶鼠李 | 根 Root | D2H | 0.95 | y = 0.7x0.85 |
Rhamnus | 枝 Branch | D2H | 0.96 | y = 0.74x0.91 |
parvifolia | 叶 Leaf | D2H | 0.88 | y = 0.89x0.58 |
总计 Total | D2H | 0.96 | y = 1.95x0.85 | |
河朔荛花 | 根 Root | D2H | 0.83 | y = 0.81x0.61 |
Wikstroemia | 枝 Branch | D2H | 0.95 | y = 0.92x0.78 |
chamedaphne | 叶 Leaf | D2H | 0.48 | y = 1.32x0.35 |
总计 Total | D2H | 0.92 | y = 2.31x0.68 | |
绣线菊 | 根 Root | D2H | 0.77 | y = 0.18x1.14 |
Spiraea salicifolia | 枝 Branch | D2H | 0.78 | y = 0.23x1.18 |
叶 Leaf | D2H | 0.62 | y = 0.07x1.15 | |
总计 Total | D2H | 0.79 | y = 0.48x1.16 | |
荆条 | 根 Root | D2H | 0.84 | y = 0.2x1.09 |
Vitex negundo var. | 枝 Branch | D2H | 0.82 | y = 0.54x0.95 |
heterophylla | 叶 Leaf | D2H | 0.66 | y = 0.86x0.59 |
总计 Total | D2H | 0.90 | y = 1.07x0.95 | |
蚂蚱腿子 | 根 Root | D2H | 0.95 | y = 0.07x1.16 |
Myripnois dioica | 枝 Branch | D2H | 0.91 | y = 0.42x1.00 |
叶 Leaf | D2H | 0.79 | y = 0.31x0.71 | |
总计 Total | D2H | 0.95 | y = 0.64x1.00 | |
胡枝子 | 根 Root | D2H | 0.41 | y = 0.19x1.06 |
Lespedeza bicolor | 枝 Branch | D2H | 0.87 | y = 0.15x1.5 |
叶 Leaf | D2H | 0.84 | y = 0.29x1.25 | |
总计 Total | D2H | 0.84 | y = 0.61x1.29 |
表2 东灵山地区8种常见灌木物种生物量异速生长模型
Table 2 Biomass allometric models for eight common shrub species in Mt. Dongling
物种 Species | 器官 Organ | 变量 Variable | R2 | 方程 Equation |
---|---|---|---|---|
山杏 | 根 Root | D2H | 0.81 | y = 1.26x0.77 |
Armeniaca sibirica | 枝 Branch | D2H | 0.94 | y = 1.09x0.79 |
叶 Leaf | D2H | 0.87 | y = 1.61x0.56 | |
总计 Total | D2H | 0.95 | y = 3.53x0.74 | |
小叶白蜡 | 根 Root | D2H | 0.88 | y = 0.2x0.91 |
Fraxinus bungeana | 枝 Branch | D2H | 0.50 | y = 5.47x0.51 |
叶 Leaf | D2H | 0.77 | y = 0.13x0.8 | |
总计 Total | D2H | 0.72 | y = 4.47x0.62 | |
小叶鼠李 | 根 Root | D2H | 0.95 | y = 0.7x0.85 |
Rhamnus | 枝 Branch | D2H | 0.96 | y = 0.74x0.91 |
parvifolia | 叶 Leaf | D2H | 0.88 | y = 0.89x0.58 |
总计 Total | D2H | 0.96 | y = 1.95x0.85 | |
河朔荛花 | 根 Root | D2H | 0.83 | y = 0.81x0.61 |
Wikstroemia | 枝 Branch | D2H | 0.95 | y = 0.92x0.78 |
chamedaphne | 叶 Leaf | D2H | 0.48 | y = 1.32x0.35 |
总计 Total | D2H | 0.92 | y = 2.31x0.68 | |
绣线菊 | 根 Root | D2H | 0.77 | y = 0.18x1.14 |
Spiraea salicifolia | 枝 Branch | D2H | 0.78 | y = 0.23x1.18 |
叶 Leaf | D2H | 0.62 | y = 0.07x1.15 | |
总计 Total | D2H | 0.79 | y = 0.48x1.16 | |
荆条 | 根 Root | D2H | 0.84 | y = 0.2x1.09 |
Vitex negundo var. | 枝 Branch | D2H | 0.82 | y = 0.54x0.95 |
heterophylla | 叶 Leaf | D2H | 0.66 | y = 0.86x0.59 |
总计 Total | D2H | 0.90 | y = 1.07x0.95 | |
蚂蚱腿子 | 根 Root | D2H | 0.95 | y = 0.07x1.16 |
Myripnois dioica | 枝 Branch | D2H | 0.91 | y = 0.42x1.00 |
叶 Leaf | D2H | 0.79 | y = 0.31x0.71 | |
总计 Total | D2H | 0.95 | y = 0.64x1.00 | |
胡枝子 | 根 Root | D2H | 0.41 | y = 0.19x1.06 |
Lespedeza bicolor | 枝 Branch | D2H | 0.87 | y = 0.15x1.5 |
叶 Leaf | D2H | 0.84 | y = 0.29x1.25 | |
总计 Total | D2H | 0.84 | y = 0.61x1.29 |
物种 Species | 变量 Variable | 对照 Control (N0) | 低氮 Low-N (N1) | 中氮 Medium-N (N2) | 高氮 High-N (N3) |
---|---|---|---|---|---|
荆条灌丛 Vitex negundo var. heterophylla shrubland | D | 0.70 ± 0.10 | 0.90 ± 0.20 | 0.70 ± 0.00 | 0.70 ± 0.10 |
H | 78.30 ± 7.80 | 84.20 ± 10.10 | 74.60 ± 3.00 | 75.40 ± 9.00 | |
绣线菊灌丛 Spiraea salicifolia shrubland | D | 0.53 ± 0.00 | 0.57 ± 0.00 | 0.57 ± 0.00 | 0.54 ± 0.00 |
H | 76.40 ± 0.60 | 78.80 ± 4.00 | 81.40 ± 7.10 | 82.80 ± 4.70 |
表3 不同氮添加处理样地灌木的基径和株高(平均值±标准偏差)
Table 3 Shrub diameter (D, cm) and height (H, cm) of shrubland under different nitrogen addition treatments (mean ± SD)
物种 Species | 变量 Variable | 对照 Control (N0) | 低氮 Low-N (N1) | 中氮 Medium-N (N2) | 高氮 High-N (N3) |
---|---|---|---|---|---|
荆条灌丛 Vitex negundo var. heterophylla shrubland | D | 0.70 ± 0.10 | 0.90 ± 0.20 | 0.70 ± 0.00 | 0.70 ± 0.10 |
H | 78.30 ± 7.80 | 84.20 ± 10.10 | 74.60 ± 3.00 | 75.40 ± 9.00 | |
绣线菊灌丛 Spiraea salicifolia shrubland | D | 0.53 ± 0.00 | 0.57 ± 0.00 | 0.57 ± 0.00 | 0.54 ± 0.00 |
H | 76.40 ± 0.60 | 78.80 ± 4.00 | 81.40 ± 7.10 | 82.80 ± 4.70 |
图1 氮添加对灌木基径(D)和株高(H)相对生长速率的影响(平均值±标准偏差)。相同字母a和b分别表示各处理间无显著差异(p > 0.05)。N0、N1、N2、N3氮添加量分别为0、20、50、100 kg N·hm-2·a-1。
Fig. 1 Influence of nitrogen addition treatments on the relative growth rates of shrub diameter (D) and height (H) (mean ± SD). The same letters indicates no significant difference (p > 0.05) among treatments. N0, N1, N2 and N3 denote 0, 20, 50 and 100 kg N·hm-2·a-1 nitrogen addition, respectively.
图2 氮添加对灌木层地上生物量(AGB)和总生物量(TB)的净增量的影响(平均值±标准偏差)。相同字母a和b分别表示各处理间无显著差异(p > 0.05)。N0、N1、N2、N3同图1。
Fig. 2 Influence of nitrogen addition treatments on above ground biomass (AGB) and total biomass (TB) (mean ± SD). The same letter indicates no significant difference (p > 0.05) among treatments. N0, N1, N2, N3 see Fig. 1.
图3 实验期间2012 (左)和2013 (右)年氮添加对荆条灌丛(V.n)和绣线菊灌丛(S.t)凋落物总量及各组分量的影响(平均值±标准偏差)。N0、N1、N2、N3同图1。
Fig. 3 Influence of nitrogen addition treatments on gross litterfall and different components of litterfall of Vitex negundo var. heterophylla (V.n) and Spiraea salicifolia (S.t) shrublands in 2012 (left) and 2013 (right) (mean ± SD). N0, N1, N2, N3 see Fig. 1.
图4 氮添加对凋落物总量及各组分的季节变化的影响(平均值±标准偏差)。左侧为荆条, 右侧为绣线菊。带星号的N2和N3处理与对照N0差异达到显著水平。N0、N1、N2、N3同图1。
Fig. 4 Influence of nitrogen addition treatments on seasonal variation of gross litterfall and its component (mean ± SD). Left for Vitex negundo var. heterophylla and right for Spiraea salicifolia shrublands, respectively. N2 and N3 marked with an asterisk have a very significant difference (p < 0.05) compared to the control. N0, N1, N2, N3 see Fig. 1.
[1] | Dray JR, Gorham E (1964). Litter production in forests of the world.Advance in Ecological Research, 2, 101-157. |
[2] | Du EZ, Zhou Z, Li P, Hu XY, Ma YC, Wang W, Zheng CY, Zhu JX, He JS, Fang JY (2013). NEECF: A project of nutrient enrichment experiments in China’s forests.Journal of Plant Ecology, 6, 428-435. |
[3] | Fan HB, Liu WF, Qiu XQ, Xu L, Wang Q, Chen QF (2007). Responses of litterfall production in Chinese fir plantation to increased nitrogen deposition.Chinese Journal of Ecology, 26, 1335-1338. (in Chinese with English abstract)[樊后保, 刘文飞, 裘秀群, 徐雷, 王强, 陈秋凤 (2007). 杉木人工林凋落物量对氮沉降增加的初期响应. 生态学杂志, 26, 1335-1338.] |
[4] | Fang JY, Liu GH, Zhu B, Wang XK, Liu SH (2006). Carbon budgets of three temperate forest ecosystems in Dongling Mt., Beijing, China.Science in China (Series D: Earth Sciences), 36, 533-543. (in Chinese with English abstract)[方精云, 刘国华, 朱彪, 王效科, 刘绍辉 (2006). 北京东灵山三种温带森林生态系统的碳循环. 中国科学D辑: 地球科学, 36, 533-543.] |
[5] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR (2004). Nitrogen cycles: Past, present, and future.Bioecochemistry, 70, 153-226. |
[6] | Gao XM, Du XJ, Wang ZL (2003). Comparison of seedling recruitment and establishment of Quercus wutaishanica in two habitats in Dongling Mountainous area, Beijing. Acta Phytoecologica Sinica, 27, 404-411. (in Chinese with English abstract)[高贤明, 杜晓军, 王中磊 (2003). 北京东灵山区两种生境条件下辽东栎幼苗补充与建立的比较. 植物生态学报, 27, 404-411.] |
[7] | Gorissen A, Tietema A, Joosten NN, Estiarte M, Peñuelas J, Sowerby A, Emmett BA, Beier C (2004). Climate change affects carbon allocation to the soil in shrublands.Ecosystems, 7, 650-661. |
[8] | Guan LL, Zhou GY, Zhang DQ, Liu JX, Zhang QM (2004). Twenty years of litterfall dynamics in subtropical evergreen broad-leaved forests at the Dinghushan forest ecosystem research station. Acta Phytoecologica Sinica, 28, 445-456. (in Chinese with English abstract)[官丽莉, 周国逸, 张德强, 刘菊秀, 张倩媚 (2004). 鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究. 植物生态学报, 28, 445-456.] |
[9] | He JS, Wang QB, Hu D (1997). Studies on the biomass of typical shrubland and their regeneration capacity after cutting. Acta Phytoecologica Sinica, 21, 512-520. (in Chinese with English abstract)[贺金生, 王其兵, 胡东 (1997). 长江三峡地区典型灌丛的生物量及其再生能力. 植物生态学报, 21, 512-520.] |
[10] | Howard D, Richard B (2003). Nitrogen: The essential public enemy.Journal of Applied Ecology, 40, 771-781. |
[11] | Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China.Journal of Plant Ecology (Chinese Version), 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.] |
[12] | Kikuzawa K, Asai T, Fukuchi M (1977). Leaf litter production in a plantation of Alnus inokumae. Journal of Ecology, 72, 993-999. |
[13] | Kira T, Shidei T (1967). Primary production and turnover of organic matter in different forest ecosystems of the western Pacific.Japanese Journal of Ecology, 17, 70-87. |
[14] | Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Goldstein G (2007). Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Functional Ecology, 21, 1034-1043. |
[15] | Lieth H, Whittaker RH (1975). Primary Productivity of the Biosphere. Springer-Verlag, New York. |
[16] | Liu L, Greaver TL (2010). A global perspective on below- ground carbon dynamics under nitrogen enrichment. Ecology Letters, 13, 819-828. |
[17] | Liu XZ, Wang GA, Li JZ, Wang Q (2009). Nitrogen isotope composition characteristics of modern plants and their variations along an altitudinal gradient in Dongling Mountain in Beijing.Science in China (Series D: Earth Sciences), 39, 1347-1359. (in Chinese with English abstract)[刘贤赵, 王国安, 李嘉竹, 王庆 (2009). 北京东灵山地区现代植物氮同位素组成及其对海拔梯度的响应. 中国科学D辑: 地球科学, 39, 1347-1359.] |
[18] | Lu M, Zhou XH, Luo YQ, Yang YH, Fang CM, Chen JK, Li B (2011). Minor stimulation of soil carbon storage by nitro- gen addition: A meta-analysis.Agriculture Ecosystems and Environment, 140, 234-244. |
[19] | Lü Y, Zheng ZM, Meiliban M, Lu J, Wang XH (2013). Effects of nitrogen and phosphorus fertilization on litterfall production and nutrient dynamics in a Schima superba forest in Zhejiang Province of East China. Chinese Journal of Applied Ecology, 24, 3027-3034. (in Chinese with English abstract)[吕妍, 郑泽梅, 美丽班·马木提, 陆江, 王希华 (2013). 增施氮磷肥对木荷林凋落物生产量及其养分的影响. 应用生态学报, 24, 3027-3034.] |
[20] | Mo JM, Xue H, Fang YT (2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forest in subtropical China.Acta Ecologica Sinica, 24, 1413-1420. |
[21] | Murty D, McMurtrie RE, Ryan MG (1996). Declining forest productivity in aging forest stands: A modeling analysis of alternative hypotheses. Tree Physiology, 16, 187-200. |
[22] | Smaill SJ, Clinton PW, Greenfield LG (2008). Nitrogen fertilizer effects on litter fall, FH layer and mineral soil characteristics in New Zealand Pinus radiate plantations. Forest Ecology and Management, 256, 564-569. |
[23] | Spiecker H (1999). Overview of recent growth trends in Euro- pean forests.Water Air and Soil Pollution, 116, 33-46. |
[24] | Tamm CO (1991). Nitrogen in Terrestrial Ecosystems: Questions of Productivity, Vegetational Changes, and Ecosystem Stability. Springer-Verlag, Berlin. 50-97. |
[25] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications, 7, 737-750. |
[26] | Wang FY (1989). Review on the study of forest litterfall.Advances in Ecology, 6, 82-89. (in Chinese with English abstract)[王凤友 (1989). 森林凋落量研究综述. 生态学进展, 6, 82-89.] |
[27] | Wessel WW, Tietema A, Beier C, Emmett BA, Peñuelas J, Riis-Nielson T (2004). A qualitative ecosystem assessment for different shrublands in western Europe under impact of climate change.Ecosystems, 7, 662-671. |
[28] | Xu XN, Hirata E, Shibata H (2004). Effect of typhoon disturbance on fine litterfall and related nutrient input in a sub-tropical forest on Okinawa Island, Japan.Basic and Applied Ecology, 5, 271-282. |
[29] | Zhang C, Zhang L, Li P, Shi WT, Xu XN (2014). Response of litter production and its seasonality to increased nitrogen deposition in a subtropical evergreen broad-leaved forest. Chinese Journal of Ecology, 33, 1205-1210. (in Chinese with English abstract)[张驰, 张林, 李鹏, 施文涛, 徐小牛 (2014). 亚热带常绿阔叶林凋落物生产及季节动态对模拟氮沉降增加的响应. 生态学杂志, 33, 1205-1210.] |
[30] | Zheng SW, Tang M (2007). Summary of research on shrub biomass in China.Journal of Chengdu University (Natural Science Edition), 26, 189-192. (in Chinese with English abstract)[郑绍伟, 唐敏 (2007). 灌木群落及生物量研究综述. 成都大学学报(自然科学版), 26, 189-192.] |
[1] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[2] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[3] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[4] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[5] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[6] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[7] | 张宏锦 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 0-0. |
[8] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[9] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[10] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[11] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[12] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[13] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
[14] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[15] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19