植物生态学报 ›› 2011, Vol. 35 ›› Issue (9): 973-980.DOI: 10.3724/SP.J.1258.2011.00973
收稿日期:
2013-03-17
接受日期:
2014-06-22
出版日期:
2011-03-17
发布日期:
2011-09-01
作者简介:
*E-mail:vacuous_motley@163.com
Received:
2013-03-17
Accepted:
2014-06-22
Online:
2011-03-17
Published:
2011-09-01
摘要:
为检验“水淹程度可以改变植物种内关系的类型和强度”的假说, 将克隆植物空心莲子草(Alternanthera philoxeroides)的3种不同密度的植株(每盆种植1、4或16株)置于4种不同的水淹处理下(水位分别为-20 (不水淹)、0、20或40 cm), 研究不同水淹程度对空心莲子草种内关系的影响。随着植株密度和水淹程度的增加, 空心莲子草的生长显著减慢, 但密度效应在不同的水淹处理下显著不同。在不发生水淹的情况下, 植株密度对生长的负面(竞争)效应最强; 在水位为0和20 cm的情况下, 植株密度对生长的效应仍为负面的, 但影响强度相对减小; 而在水位为40 cm的情况下, 空心莲子草植株的生物量随着植株密度的增大而倾向于增加。进一步分析相对邻体效应时发现, 随着水淹程度的增加, 相对邻体效应显著增加, 并且数值从负值(不水淹)逐渐变为正值(40 cm水位下)。这些结果支持胁迫梯度假说, 表明水淹可以影响植物的种内关系, 即随着水淹程度的增加, 植物种内竞争作用减弱, 而易化作用增强。
于国磊. 水淹对克隆植物空心莲子草种内关系的影响. 植物生态学报, 2011, 35(9): 973-980. DOI: 10.3724/SP.J.1258.2011.00973
YU Guo-Lei. Effects of waterlogging on intraspecific interactions of the clonal herb Alternanthera philoxeroides. Chinese Journal of Plant Ecology, 2011, 35(9): 973-980. DOI: 10.3724/SP.J.1258.2011.00973
性状 Trait | 水淹 Waterlogging | 植株密度 Plant density | 交互作用 Interaction | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
总生物量 Total biomass | 44.7 | <0.001 | 9.9 | <0.001 | 5.0 | 0.001 | ||
根生物量 Root biomass | 83.5 | <0.001 | 15.4 | <0.001 | 14.2 | <0.001 | ||
茎生物量 Stem biomass | 30.0 | <0.001 | 2.8 | 0.075 | 1.3 | 0.297 | ||
叶生物量 Leaf biomass | 45.5 | <0.001 | 52.6 | <0.001 | 14.7 | <0.001 | ||
总叶面积 Total leaf area | 28.4 | <0.001 | 40.4 | <0.001 | 6.5 | <0.001 | ||
总节数 No. of total nodes | 24.8 | <0.001 | 158.9 | <0.001 | 16.4 | <0.001 | ||
总茎长 Total stem length | 22.6 | <0.001 | 193.9 | <0.001 | 13.2 | <0.001 | ||
总叶片数 No. of total leaves | 42.0 | <0.001 | 72.6 | <0.001 | 20.1 | <0.001 |
表1 水淹和植株密度对空心莲子草植株生长的影响
Table 1 Effects of waterlogging and plant density on growth of Alternanthera philoxeroides plant
性状 Trait | 水淹 Waterlogging | 植株密度 Plant density | 交互作用 Interaction | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
总生物量 Total biomass | 44.7 | <0.001 | 9.9 | <0.001 | 5.0 | 0.001 | ||
根生物量 Root biomass | 83.5 | <0.001 | 15.4 | <0.001 | 14.2 | <0.001 | ||
茎生物量 Stem biomass | 30.0 | <0.001 | 2.8 | 0.075 | 1.3 | 0.297 | ||
叶生物量 Leaf biomass | 45.5 | <0.001 | 52.6 | <0.001 | 14.7 | <0.001 | ||
总叶面积 Total leaf area | 28.4 | <0.001 | 40.4 | <0.001 | 6.5 | <0.001 | ||
总节数 No. of total nodes | 24.8 | <0.001 | 158.9 | <0.001 | 16.4 | <0.001 | ||
总茎长 Total stem length | 22.6 | <0.001 | 193.9 | <0.001 | 13.2 | <0.001 | ||
总叶片数 No. of total leaves | 42.0 | <0.001 | 72.6 | <0.001 | 20.1 | <0.001 |
图1 水淹(水位)和植株密度对空心莲子草植株总生物量(A)、根生物量(B)、茎生物量(C)和叶生物量(D)的影响(平均值±标准误差)。
Fig. 1 Effects of waterlogging (water level) and plant density on total biomass (A), root biomass (B), stolon biomass (C) and leaf biomass (D) per Alternanthera philoxeroides plant (mean ± SE).
图2 水淹(水位)和植株密度对空心莲子草植株总叶片数(A)、总叶面积(B)、总茎长(C)和总节数(D)的影响(平均值±标准误差)。
Fig. 2 Effects of waterlogging (water level) and plant density on total number of leaves (A), total leaf area (B), total stem length (C) and total number of nodes (D) per Alternanthera philoxeroides plant (mean ± SE).
图3 水淹(水位)和植株密度对空心莲子草相对邻体效应(RNE)的影响(平均值±标准误差)。
Fig. 3 Effects of waterlogging (water level) and plant density on the relative neighbor effect (RNE) of Alternanthera philoxeroides plant (mean ± SE).
[1] |
Andersson TN, Lundegårdh B (1999). Growth of field horsetail (Equisetum arvense) under low light and nitrogen conditions. Weed Science, 47, 41-46.
DOI URL |
[2] | Bazzaz FA (1996). Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge University Press, Cambridge, UK. |
[3] | Bertness MD (1989). Intraspecific competition and facilitation in a northern acorn barnacle population. Ecology, 70, 257-268. |
[4] |
Bertness MD, Callaway RM (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191-193.
URL PMID |
[5] |
Bertness MD, Ewanchuk PJ (2002). Latitudinal and climate- driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia, 132, 392-401.
URL PMID |
[6] | Bertness MD, Hacker SD (1994). Physical stress and positive associations among marsh plants. The American Naturalist, 144, 363-372. |
[7] |
Bertness MD, Shumway SW (1993). Competition and facilitation in marsh plants. The American Naturalist, 142, 718-724.
URL PMID |
[8] |
Bertness MD, Yeh SM (1994). Cooperative and competitive interactions in the recruitment of marsh elders. Ecology, 75, 2416-2429.
DOI URL |
[9] |
Bosse U, Frenzel P (1997). Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa). Applied and Environmental Microbiology, 63, 1199-1207.
URL PMID |
[10] | Brooker RW (2006). Plant-plant interactions and environmental change. New Phytologist, 171, 271-284. |
[11] | Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2007). Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 96, 18-34. |
[12] | Bruno JF, Stachowicz JJ, Bertness MD (2003). Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18, 119-125. |
[13] | Buttery BR, Williams WT, Lambert JM (1965). Competition between Glyceria maxima and Phragmites communis in the region of Surlingham Broad. II. The fen gradient. Journal of Ecology, 53, 183-195. |
[14] |
Callaway RM (1997). Positive interactions in plant communities and the individualistic-continuum concept. Oecologia, 112, 143-149.
URL PMID |
[15] | Callaway RM (2007). Positive Interactions and Interdependence in Plant Communities. Springer, Dordrecht. |
[16] | Crain CM (2008). Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. Journal of Ecology, 96, 166-173. |
[17] | Dinka M, Szeglet P (1999). Carbohydrate and nutrient content in rhizomes of Phragmites australis from different habitats of Lake FertÕ/Neusiedlersee. Limnologica-Ecology and Management of Inland Waters, 29, 47-59. |
[18] |
Dong BC, Zhang MX, Alpert P, Lei GC, Yu FH (2010). Effects of orientation on survival and growth of small fragments of the invasive, clonal plantAlternanthera philoxeroides. PLoS One, 5, e13631.
URL PMID |
[19] |
Drew MC (1997). Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 223-250.
URL PMID |
[20] | Flessa H, Fischer WR (1992). Redoxprozesse in der Rhizosphäre von Land-und Sumpfpflanzen. Zeitschrift fürPflanzenern ährung und Bodenkunde, 155, 373-378. |
[21] | Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK, Lu BR, Song ZP (2007). Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biological Invasions, 9, 245-256. |
[22] |
Greenlee JT, Callaway RM (1996). Abiotic stress and the relative importance of interference and facilitation in montane bunchgrass communities in western Montana. The American Naturalist, 148, 386-396.
DOI URL |
[23] |
Hashiguchi A, Sakata K, Komatsu S (2009). Proteome analysis of early-stage soybean seedlings under flooding stress. Journal of Proteome Research, 8, 2058-2069.
URL PMID |
[24] |
Hershenson M (1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63, 289-293.
DOI URL PMID |
[25] | Holmes MG, Klein WH (1987). Light and temperature variations in aquatic and terrestrial environment. In: Crawford RMM ed. Plant Life in Aquatic and Amphibious Habitats. Blackwell, Oxford. 3-22. |
[26] | Hu TT ( 胡田田), Kang SZ ( 康绍忠) (2005). A review of responses of plants to waterlogging stress. Journal of Fujian Agricultural and Forestry University (Natural Science Edition) (福建农林大学学报(自然科学版)), 34(1), 18-24. (in Chinese with English abstract) |
[27] |
Jackson MB, Armstrong W (1999). Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1, 274-287.
DOI URL |
[28] |
Jackson MB, Ram PC (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 91, 227-241.
URL PMID |
[29] | Jiang HY ( 江红英), Chen ZY ( 陈中义), Hao Y ( 郝勇) (2007). Research progress on physiological and ecological characteristics of Alternanthera philoxeroides. Journal of Anhui Agricultural Sciences (安徽农业科学), 35, 6721-6722. (in Chinese with English abstract) |
[30] | Kikvidze Z, Khetsuriani L, Kikodze D, Callaway RM (2006). Seasonal shifts in competition and facilitation in subalpine plant communities of the central Caucasus. Journal of Vegetation Science, 17, 77-82. |
[31] |
Kitzberger T, Steinaker DF, Veblen TT (2000). Effects of climatic variability on facilitation of tree establishment in northern Patagonia. Ecology, 81, 1914-1924.
DOI URL |
[32] | Li MS ( 李茂松), Li S ( 李森), Li YH ( 李育慧) (2004). Analysis of flood disaster in the past 50 years in China. Chinese Journal of Agrometeorology (中国农业气象), 25(1), 38-41. (in Chinese with English abstract) |
[33] |
Li PX, Krüsi BO, Li SL, Cai XH, Yu FH (2011a). Facilitation associated with three contrasting shrub species in heavily grazed pastures on the Tibetan Plateau. Community Ecology, 12, 1-8.
DOI URL |
[34] | Li PX, Krüsi BO, Li SL, Cai XH, Yu FH (2011b). Can Potentilla fruticosa Linn. shrubs facilitate the herb layer of heavily grazed pasture on the eastern Tibetan Plateau? Polish Journal of Ecology, 59, 129-140. |
[35] |
Longstreth DJ, Bolaños JA, Smith JE (1984). Salinity effects on photosynthesis and growth in Alternanthera philoxeroides(Mart.) Griseb. Plant Physiology, 75, 1044-1047.
URL PMID |
[36] | Luo FL ( 罗芳丽), Zeng B ( 曾波), Chen T ( 陈婷), Ye XQ ( 叶小齐), Liu D ( 刘巅) (2007). Response to simulated flooding of photosynthesis and growth of riparian plant Salix variegate in the Three Gorges reservoir region of China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 910-918. (in Chinese with English abstract) |
[37] |
Luo FL, Nagel KA, Scharr H, Zeng B, Schurr U, Matsubara S (2011). Recovery dynamics of growth, photosynthesis and carbohydrate accumulation after de-submergence: a comparison between two wetland plants showing escape and quiescence strategies. Annals of Botany, 107, 49-63.
DOI URL PMID |
[38] | Maestre FT, Cortina J (2004). Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proceedings of the Royal Society of London Series B (Biological Sciences), 271, S331-S333. |
[39] |
Maestre FT, Valladares F, Reynolds JF (2005). Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. Journal of Ecology, 93, 748-757.
DOI URL |
[40] |
Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJW (2005). Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiology, 139, 497-508.
DOI URL PMID |
[41] | Pan XY ( 潘晓云), Geng YP ( 耿宇鹏), Sosa A, Zhang WJ ( 张文驹), Li B ( 李博), Chen JK ( 陈家宽) (2007). Invasive Alternanthera philoxeroides: biology, ecology and management. Acta Phytotaxonomica Sinica (植物分类学报), 45, 884-900. (in Chinese with English abstract) |
[42] | Perata P, Alpi A (1993). Plant responses to anaerobiosis. Plant Science, 93, 1-17. |
[43] |
Sainty G, McCorkelle G, Julien M (1998). Control and spread of alligator weed Alternanthera philoxeroides(Mart.) Griseb., in Australia: lessons for other regions. Wetlands Ecology and Management, 5, 195-201.
DOI URL |
[44] | Setter TL, Laureles EV (1996). The beneficial effect of reduced elongation growth on submergence tolerance of rice. Journal of Experimental Botany, 47, 1551-1559. |
[45] | Silvertown JW, Lovett-Doust J (1993). An Introduction to Plant Population Biology 3rd edn. Blackwell, Oxford. |
[46] | Vellend M (2008). Effects of diversity on diversity: consequences of competition and facilitation. Oikos, 117, 1075-1085. |
[47] | Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000). Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant, Cell & Environment, 23, 1237-1245. |
[48] | Voesenek LACJ, Rijnder JHGM, Peeters AJM, van de Steeg HM, de Kroon H (2004). Plant hormones regulate fast shoot elongation under water: from genes to communities. Ecology, 85, 16-27. |
[49] |
Walker LR, Chapin FS III (1987). Interactions among processes controlling successional change. Oikos, 50, 131-135.
DOI URL |
[50] | Wang HF ( 王海锋), Zeng B ( 曾波), Li Y ( 李娅), Qiao P ( 乔普), Ye XQ ( 叶小齐), Luo FL ( 罗芳丽) (2008). Effects of submergence on growth, survival and recovery growth of Alternanthera philoxeroides. Journal of Wuhan Botanical Research (武汉植物学研究), 26, 147-152. (in Chinese with English abstract) |
[51] |
Wilson SD, Keddy PA (1986). Species competitive ability and position along a natural stress/disturbance gradient. Ecology, 67, 1236-1242.
DOI URL |
[52] | Yan SZ ( 颜素珠), Liang D ( 梁东), Peng XJ ( 彭秀娟) (1990). A research on the tolerance and purification ability of eight aquatic plants in heavy metal (Cu) contaminated sewage. China Environmental Science (中国环境科学), 10, 166-170. (in Chinese with English abstract) |
[53] |
Yu FH, Li PX, Li SL, He WM (2010). Kobresia tibetica tussocks facilitate plant species inside them and increase diversity and reproduction. Basic and Applied Ecology, 11, 743-751.
DOI URL |
[54] | Zaerr JB (1983). Short-term flooding and net photosynthesis in seedlings of three conifers. Forest Science, 29, 71-78. |
[55] | Zeng SH ( 曾淑华), Liu FH ( 刘飞虎), Qin P ( 覃鹏), Liu XL ( 刘小莉), Guo JH ( 郭锦海), Guo CM ( 郭春明) (2004). Effects of waterlogging on the photosynthesis of tobacco cultivars. Guangxi Agricultural Sciences (广西农业科学), 35, 261-264. (in Chinese with English abstract) |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[3] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[4] | 冉松松, 余再鹏, 万晓华, 傅彦榕, 邹秉章, 王思荣, 黄志群. 邻域树种多样性对杉木叶片氮磷生态化学计量比的影响[J]. 植物生态学报, 2023, 47(7): 932-942. |
[5] | 胡昭佚, 陈天松, 赵丽, 许培轩, 吴正江, 董李勤, 张昆. 水位下降对若尔盖高寒草本沼泽木里薹草氮磷重吸收的影响[J]. 植物生态学报, 2023, 47(6): 847-855. |
[6] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[7] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[8] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[9] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[10] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[11] | 史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(1): 77-87. |
[12] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[13] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[14] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[15] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19