植物生态学报 ›› 2005, Vol. 29 ›› Issue (6): 1007-1019.DOI: 10.17521/cjpe.2005.0120
所属专题: 生态化学计量
收稿日期:
2004-09-20
接受日期:
2005-05-27
出版日期:
2005-09-30
发布日期:
2005-09-30
作者简介:
E-mail:zengdh@iae.ac.cn
基金资助:
ZENG De-Hui1(), CHEN Guang-Sheng1,2
Received:
2004-09-20
Accepted:
2005-05-27
Online:
2005-09-30
Published:
2005-09-30
摘要:
20世纪以来,生物科学的发展异军突起,成为发展最快的学科,不仅学科分类逐渐细化,而且研究领域也逐渐深入,然而,这种分化和深入也可能会掩盖生物的一些最普遍特征。地球上的生物是否具有统一的、更本质的特征?能否把不同生物学领域和不同层次的知识联系起来?随着对这些问题的不断探索,一门新兴的学科——生态化学计量学,在最近20年悄然兴起。生态化学计量学结合了生物学、化学和物理学等基本原理,是研究生物系统能量平衡和多重化学元素(主要是C、N、P)平衡的科学。这一研究领域使得生物学科不同层次(分子、细胞、有机体、种群、生态系统和全球尺度)的研究理论能够有机地统一起来。目前,生态化学计量学已经广泛应用于种群动态、生物体营养动态、微生物营养、寄主-病原关系、生物共生关系、消费者驱动的养分循环、限制性元素的判断、生态系统比较分析和森林演替与衰退及全球C、N、P生物地球化学循环等研究中,并取得了许多研究成果。该文概述了生态化学计量的概念、历史起源和基本理论,重点介绍了生态化学计量学理论在消费者驱动的养分循环、限制性养分元素判别以及全球C、N、P循环等方面的应用进展,并对生态化学计量学未来的研究方向进行了展望,期望引起国内同行的重视并有助于推动我国在此领域开展相关研究。
曾德慧, 陈广生. 生态化学计量学:复杂生命系统奥秘的探索. 植物生态学报, 2005, 29(6): 1007-1019. DOI: 10.17521/cjpe.2005.0120
ZENG De-Hui, CHEN Guang-Sheng. ECOLOGICAL STOICHIOMETRY: A SCIENCE TO EXPLORE THE COMPLEXITY OF LIVING SYSTEMS. Chinese Journal of Plant Ecology, 2005, 29(6): 1007-1019. DOI: 10.17521/cjpe.2005.0120
元素 Element | 产生来源 Sources of flux | 产生大小 Magnitude of flux (109 kg·a-1) | 人类的影响 The change due to human activities (%) | |
---|---|---|---|---|
自然 Natural | 人类 Anthropogenic | |||
C | 陆地生物呼吸和分解Terrestrial respiration and decay CO2 | 61 000 | 8 000 | +13 |
化石燃料燃烧和土地利用改变Fossil fuel and land use CO2 | ||||
N | 自然界生物固氮Natural biological fixation | 130 | 140 | +108 |
农作物、化石燃料燃烧和施肥Fixation owing to rice cultivation, combustion of fossil fuels, and production of fertilizer | ||||
P | 风化Chemical weathering | 3 | 12 | +400 |
采矿Mining |
表1 人类活动对C、N、P全球生物地球化学循环的影响(Falkowski et al., 2000)
Table 1 Examples of human intervention in global biogeochemical cycles of C, N, P (Falkowski et al., 2000)
元素 Element | 产生来源 Sources of flux | 产生大小 Magnitude of flux (109 kg·a-1) | 人类的影响 The change due to human activities (%) | |
---|---|---|---|---|
自然 Natural | 人类 Anthropogenic | |||
C | 陆地生物呼吸和分解Terrestrial respiration and decay CO2 | 61 000 | 8 000 | +13 |
化石燃料燃烧和土地利用改变Fossil fuel and land use CO2 | ||||
N | 自然界生物固氮Natural biological fixation | 130 | 140 | +108 |
农作物、化石燃料燃烧和施肥Fixation owing to rice cultivation, combustion of fossil fuels, and production of fertilizer | ||||
P | 风化Chemical weathering | 3 | 12 | +400 |
采矿Mining |
[1] | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30,1-67. |
[2] | gren GI (2004). The C:N:P stoichiometry of autotrophs-theory and observations. Ecology Letters, 7,185-191. |
[3] | Allen TFH, Hoekstra TW (1992). Toward a Unified Ecology. Columbia University Press, New York. |
[4] | Andersen T (1997). Pelagic Nutrient Cycles: Herbivores as Sources and Sinks. Springer-Verlag, Berlin. |
[5] | Andersen T, Elser JJ, Hessen DO (2004). Stoichiometry and population dynamics. Ecology Letters, 7,884-900. |
[6] | Andersen T, Hessen DO (1991). Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology and Oceanography, 36,807-814. |
[7] | Austin AT, Howarth RW, Baron JS, Chapin FS III, Christensen TR, Holland EA, Ivanov MV, Lein AY, Martinelli LA, Melillo JM, Shang C (2003). Human disruption of element interactions: drivers, consequences, and trends for the twenty-first century. In: Melillo JM, Field CB, Moldan B eds. Interactions of the Major Biogeochemical Cycles: Global Change and Human Impacts. Island Press, Washington, D.C.,15-45. |
[8] |
Belovsky GE (1978). Diet optimization in a generalist herbivore: the moose. Theoretical Population Biology, 14,105-134.
DOI URL PMID |
[9] | Bennett EM, Carpenter SR, Caraco NF (2001). Human impact on erodable phosphorus and eutrophication: a global perspective. BioScience, 51,227-234. |
[10] | Boynton WR, Kemp WM, Keefe CW (1982). A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In: Kennedy VS ed. Estuarine Comparisons. Academic Press, New York,69-70. |
[11] | Braakhekke WG, Hooftman DAP (1999). The resource balance hypothesis of plant species diversity in grassland. Journal of Vegetation Science, 10,187-200. |
[12] | Caron AC, Porter KG, Sanders RW (1990). Carbon, nitrogen and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnology and Oceanography, 35,433-443. |
[13] | Chen GS, Zeng DH, Chen FS (2004). Foliar and surface soil nutrient concentrations of Pinus spp. plantations in relation to species and stand age in Zhanggutai sandy land, northeast China. Journal of Forestry Research, 15,11-18. |
[14] | Chrzanowski TH, Kyle M, Elser JJ, Sterner RW (1996). Element ratios and growth dynamics of bacteria in an oligotrophic Canadian shield lake. Aquatic Microbial Ecology, 11,119-125. |
[15] | Crews TE (1993a). Nutrient limitation to nitrogen fixation in young volcanic sites. Ecosystems, 2,505-510. |
[16] | Crews TE (1993b). Phosphorus regulation of nitrogen fixation in a traditional Mexican agroecosystem. Biogeochemistry, 21,141-166. |
[17] | Downing JA (1997). Marine nitrogen: phosphorus stoichiometry and the global N:P cycle. Biogeochemistry, 37,237-252. |
[18] | Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate—stoichiometry couplings in diverse biota. Ecology Letters, 6,936-943. |
[19] | Elser JJ, Dobberfuhl D, MacKay NA, Schampel JH (1996). Organism size, life history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. BioScience, 46,674-684. |
[20] | Elser JJ, Elser MM, MacKay NA, Carpenter SR (1988). Zooplankton-mediated transitions between N and P limited algal growth. Limnology and Oceanography, 33,1-14. |
[21] |
Elser JJ, Fagan W, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000a). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408,578-580.
DOI URL PMID |
[22] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000b). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3,540-550. |
[23] | Elser JJ, Urabe J (1999). The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 80,735-751. |
[24] |
Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Høgberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000). The global carbon cycle: a test of our knowledge of Earth as a system. Science, 290,291-296.
URL PMID |
[25] | Frost PC, Elser JJ (2002). Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters, 5,232-240. |
[26] | Galloway JN, Cowling EB (2002). Reactive nitrogen and the world: 200 years of change. Ambio, 31,64-71. |
[27] | Gorokhova E, Kyle M (2002). Analysis of nucleic acids in Daphnia: development of methods and ontogenetic variations in RNA-DNA content. Journal of Plankton Research, 24,511-522. |
[28] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164,243-266. |
[29] | Harris G (2003). Book review: ecological stoichiometry: biology of elements from molecules to the biosphere. Journal of Plankton Research, 25,1183. |
[30] | Hessen DO (1990). Carbon, nitrogen and phosphorus status in Daphnia at varying food conditions. Journal of Plankton Research, 12,1239-1249. |
[31] | Hessen DO (1997). Stoichiometry in food webs—Lotka revisited. Oikos, 79,195-200. |
[32] | Hessen DO, gren GI, Anderson TR, Elser JJ, de Ruiter PC (2004). Carbon sequestration in ecosystems: the role of stoichiometry. Ecology, 85,1179-1192. |
[33] | Hoffert MI, Caldeira K, Jain AK, Haites EF, Harvey LDD, Potter SD, Schlesinger ME, Schneider SH, Watts RG, Wigley TML, Wuebbles DJ (1998). Energy implications of future stabilization of atmospheric CO 2 content. Nature, 395,881-884. |
[34] |
Hopkinson CS, Vallino JJ (2005). Efficient export of carbon to the deep ocean through dissolved organic matter. Nature, 433,142-145.
DOI URL PMID |
[35] | Jackson RBH, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Science of the United States of America, 94,7362-7366. |
[36] | Jaenike J, Markow TA (2003). Comparative elemental stoichiometry of ecologically diverse Drosophila. Functional Ecology, 17,115-120. |
[37] | Karl DM (1999). A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems, 2,181-214. |
[38] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33,1441-1450. |
[39] | Kooijman SALM (1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177,139-149. |
[40] | Lalli CM, Parsons TR (1997). Biological Oceanography: an Introduction 2nd edn. Butterworth-Heinemann, Oxford, UK. |
[41] | Lehman JT (1984). Grazing, nutrient release, and their impacts on the structure of phytoplankton communities. In: Meyers DG, Strickler JR eds. Trophic Dynamics Within Aquatic Ecosystems. Westview Press, Boulder, USA. |
[42] | Lerman A, Mackenzie FT, Ver LMB (2000). Nitrogen and phosphorus controls of the carbon cycle. Journal of Conference Abstracts, 5,638. |
[43] | Lindeman R (1942). The trophic dynamic aspect of ecology. Ecology, 23,399-418. |
[44] |
Logan JD, Joern S, Wolesensky W (2004). Control of CNP homeostasis in herbivore consumers through differential assimilation. Bulletin of Mathematical Biology, 66,707-725.
DOI URL PMID |
[45] |
Lotka AJ (1925). Elements of Physical Biology. Williams and Wilkins, Baltimore.
DOI URL PMID |
[46] | Main TM, Dobberfuhl DR, Elser JJ (1997). N:P stoichiometry and ontogeny of crustacean zooplankton: a test of the growth rate hypothesis. Limnology and Oceanography, 42,1474-1478. |
[47] | Makino W, Cotner JB (2004). Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: implications for growth- and resource-dependent variations. Aquatic Microbial Ecology, 34,33-41. |
[48] | Makino W, Cotner JB, Sterner RW, Else JJ (2003). Are bacteria more like animals than plants? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17,121-130. |
[49] | Markow TA, Raphael B, Dobberfuhl D, Breitmeyer CM, Elser JJ, Pfeiler E (1999). Elemental stoichiometry of Drosophila and their hosts. Functional Ecology, 13,78-84. |
[50] | Marschner H (1995). Mineral Nutrition of Higher Plants. Academic Press, London. |
[51] | McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology, 85,2390-2401. |
[52] | Melillo JM, Field CB, Moldan B (2003). Interactions of the Major Biogeochemical Cycles: Global Change and Human Impacts. Island Press, Washington, D. C. |
[53] | Méndez M, Karlsson PS (2005). Nutrient stoichiometry in Pinguicula vulgaris: nutrient availability, plant size, and reproductive status. Ecology, 86,982-991. |
[54] | Meybeck M (1982). Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282,401-450. |
[55] | Michaels AF (2003). The ratios of life. Science, 300,906-907. |
[56] | Paul EA, Clark FE (1996). Closing the nitrogen cycle: return of nitrogen to the soil.In: Paul EA, Clark FE eds. Soil Microbiology and Biochemistry. Academic Press, New York,215-243. |
[57] | Redfield AC (1958). The biological control of chemical factors in the environment. American Scientist, 46,205-211. |
[58] | Redfield AC, Ketchum BH, Richards FA (1963). The influence of organisms on the composition of seawater. In: Hill MN ed. The Sea Vol. 2. Wiley Interscience, New York,26-797. |
[59] | Reiners WA (1986). Complementary models for ecosystems. American Naturalist, 127,59-73. |
[60] | Sakamoto M (1966). Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv für Hydrobiologie, 61,1-28. |
[61] | Schade JD, Espeleta JF, Klausmeier CA, McGroddy ME, Thomas SA, Zhang L (2005). A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand. Oikos, 109,40-51. |
[62] | Schade JD, Kyle M, Hobbie SE, Fagan WF, Elser JJ (2003). Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecology Letters, 6,96-101. |
[63] | Schimel DS (2003). All life is chemical. BioScience, 53,521-524. |
[64] | Schindler DW (2003). Balancing planets and molecules. Nature, 423,225. |
[65] | Sherman F, Kuselman I (1999). Stoichiometry and chemical metrology: Karl Fisher reaction. Accreditation and Quality Assurance, 4,230-234. |
[66] | Smith SV (1984). Phosphorus versus nitrogen limitation in the marine environment. Limnology and Oceanography, 29,1149-1160. |
[67] | Smith VH (1993a). Applicability of resource-ratio theory to microbial ecology. Limnology and Oceanography, 38,239-249. |
[68] | Smith VH (1993b). Implications of resource-ratio theory for microbial ecology. Advances in Microbial Ecology, 13,1-37. |
[69] | Stelzer RS, Lamberti GA (2002). Ecological stoichiometry in running waters: periphyton chemical composition and snail growth. Ecology, 83,1039-1051. |
[70] | Sterner RW (1990). The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. American Naturalist, 136,209-229. |
[71] | Sterner RW, Clasen J, Lampert W, Weisse T (1998). Carbon: phosphorus stoichiometry and food chain production. Ecology Letters, 1,146-150. |
[72] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements From Molecules to Biosphere. Princeton University Press, Princeton. |
[73] | Sterner RW, Elser JJ, Hessen DO (1992). Stoichiometric relationships among producers and consumers in food webs. Biogeochemistry, 17,49-67. |
[74] | Sterner RW, George NB (2000). Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology, 81,127-140. |
[75] | Sterner RW, Hessen DO (1994). Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics, 25,1-29. |
[76] | Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40,523-534. |
[77] | Tezuka Y (1989). The C:N:P ratios of phytoplankton determine the relative amounts of dissolved inorganic nitrogen and phosphorus released during aerobic decomposition. Hydrobiologia, 173,55-62. |
[78] | Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton. |
[79] | Urabe J, Kyle M, Makino W, Yoshida T, Andersen T, Elser JJ (2002). Reduced light increases herbivore production due to stoichiometric effects of light: nutrient balance. Ecology, 83,619-627. |
[80] | Urabe J, Nakanishi M, Kawabata K (1995). Contribution of metazoan plankton to the cycling of N and P in Lake Biwa. Limnology and Oceanography, 40,232-242. |
[81] | Urabe J, Sterner RW (1996). Regulation of herbivore growth by the balance of light and nutrients. Proceedings of the National Academy of Science of the United States of America, 93,8465-8469. |
[82] | Urabe JJ, Clasen J, Sterner RW (1997). Phosphorus-limitation of Daphnia growth: is it real? Limnology and Oceanography, 42,1436-1443. |
[83] | Vanni MJ, Flecker AS, Hood JM, Headworth JL (2002). Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking biodiversity and ecosystem function. Ecology Letters, 5,285-293. |
[84] | Vitousek PM (1982). Nutrient cycling and nutrient use efficiency. American Naturalist, 119,553-572. |
[85] | Vitousek PM (2003). Stoichiometry and flexibility in the Hawaiian model system. In: Melillo JM, Field CB, Moldan B eds. Interactions of the Major Biogeochemical Cycles: Global Change and Human Impacts. Island Press, Washington, D.C.,117-133. |
[86] | Vitousek PM (2004). Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton University Press, Princeton. |
[87] |
Vitousek PM, H⁉ttenschwiler S, Olander L, Allison S (2002). Nitrogen and nature. Ambio, 31,97-101.
DOI URL PMID |
[88] | Vogel S (1998). Academically correct biological science. American Scientist, 86,504-506. |
[89] | Ward GM, Cummins KW (1979). Effects of food quality on growth of a stream detritivore,Paraendipes albimanus (Meigen)(Diptera: Chironomidae). Ecology, 60,57-64. |
[90] |
Wardle DA, Walker LR, Bardgett RD (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305,509-513.
DOI URL PMID |
[91] | Wassen MJ, Olde Venterink HGM, de Swart EOAM (1995). Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. Journal of Vegetation Science, 6,5-16. |
[92] | White TCR (1993). The Inadequate Environment: Nitrogen and the Abundance of Animals. Springer-Verlag, Berlin. |
[93] | Zhang LX (张丽霞), Bai YF (白永飞), Han XG (韩兴国) (2003). Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica (植物学报), 45,1009-1018. |
[94] | Zhang LX (张丽霞), Bai YF (白永飞), Han XG (韩兴国) (2004). Differential responses of N:P stoichiometry ofLeymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica (植物学报), 46,259-270. |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[4] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[5] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[6] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[7] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[8] | 胡琪娟, 盛茂银, 殷婕, 白义鑫. 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征[J]. 植物生态学报, 2020, 44(9): 962-972. |
[9] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[10] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[11] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[12] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[13] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[14] | 王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹. 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响[J]. 植物生态学报, 2019, 43(5): 427-436. |
[15] | 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. 青海森林生态系统中灌木层和土壤生态化学计量特征[J]. 植物生态学报, 2019, 43(4): 352-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19