植物生态学报 ›› 2008, Vol. 32 ›› Issue (5): 1061-1071.DOI: 10.3773/j.issn.1005-264x.2008.05.011
徐振锋1, 胡庭兴1,*(), 张远彬2, 鲜骏仁1, 王开运2,3
收稿日期:
2007-11-22
接受日期:
2008-04-22
出版日期:
2008-11-22
发布日期:
2008-09-30
通讯作者:
胡庭兴
作者简介:
*(hutx001@yahoo.com.cn)基金资助:
XU Zhen-Feng1, HU Ting-Xing1,*(), ZHANG Yuan-Bin2, XIAN Jun-Ren1, WANG Kai-Yun2,3
Received:
2007-11-22
Accepted:
2008-04-22
Online:
2008-11-22
Published:
2008-09-30
Contact:
HU Ting-Xing
摘要:
采用开顶式生长室(Open-top chamber, OTC)模拟增温对植被影响的研究方法, 研究了川西亚高山林线交错带糙皮桦(Betula utilis)和岷江冷杉(Abies faxoniana)幼苗物候及生长特性对模拟增温的响应。结果表明, 温度升高使岷江冷杉幼苗芽开放时间显著提前(15.2 d); 糙皮桦春季芽物候期变化不显著, 而落叶时间明显推迟(19.7 d), 叶寿命延长(22.8 d)。与对照(CK)相比, OTC内糙皮桦叶面积和岷江冷杉叶片长度及两者侧枝生长速率都显著加快。模拟增温对两物种基径相对生长速率都表现为正效应, 增温对两物种枝叶特性及分布格局表现为不同程度的正效应、负效应或无影响。不同功能型两物种对模拟增温响应方式存在一定程度差异。
徐振锋, 胡庭兴, 张远彬, 鲜骏仁, 王开运. 川西亚高山林线交错带糙皮桦和岷江冷杉幼苗物候与生长对模拟增温的响应. 植物生态学报, 2008, 32(5): 1061-1071. DOI: 10.3773/j.issn.1005-264x.2008.05.011
XU Zhen-Feng, HU Ting-Xing, ZHANG Yuan-Bin, XIAN Jun-Ren, WANG Kai-Yun. RESPONSES OF PHENOLOGY AND GROWTH OF BETULA UTILIS AND ABIES FAXONIANA IN SUBALPINE TIMBERLINE ECOTONE TO SIMULATED GLOBAL WARMING, WESTERN SICHUAN, CHINA. Chinese Journal of Plant Ecology, 2008, 32(5): 1061-1071. DOI: 10.3773/j.issn.1005-264x.2008.05.011
图2 OTC及CK内5月1日~8月31日日平均气温变化(图中数据为两年平均值) OTC、CK: 同图1 See Fig. 1
Fig. 2 Air temperature transition of daily mean between the OTC and CK from May 1th to August 31th
物 种 Species | 展叶开始时间 Beginning time of leaf emergence | 展叶结束时间 Ending time of leaf emergence | 展叶持续时间 Duration of leaf emergence (d) | 芽休眠或落叶开始时间 Bud dormancy or beginning of leaf abscission | 落叶结束时间 Ending time of leaf abscission | 落叶持续时间 Duration of leaf abscission (d) | |
---|---|---|---|---|---|---|---|
OTC | 142.6 | 176.1 | 33.5 | 234.6 | - | - | |
冷杉 | CK | 157.8 | 193.2 | 35.4 | 226.9 | - | - |
p-level | ** | ** | * | ** | - | - | |
OTC | 138.6 | 167.2 | 28.6 | 266.8 | 313.9 | 47.1 | |
糙皮桦 | CK | 139.8 | 169.5 | 29.7 | 247.1 | 290.6 | 43.5 |
p-level | NS | * | * | ** | ** | ** |
表1 OTC和CK小样方内岷江冷杉与糙皮桦物候观测数据
Table 1 Data on leaf phenology of Abies faxoniana and Betula utilis in OTC and CK
物 种 Species | 展叶开始时间 Beginning time of leaf emergence | 展叶结束时间 Ending time of leaf emergence | 展叶持续时间 Duration of leaf emergence (d) | 芽休眠或落叶开始时间 Bud dormancy or beginning of leaf abscission | 落叶结束时间 Ending time of leaf abscission | 落叶持续时间 Duration of leaf abscission (d) | |
---|---|---|---|---|---|---|---|
OTC | 142.6 | 176.1 | 33.5 | 234.6 | - | - | |
冷杉 | CK | 157.8 | 193.2 | 35.4 | 226.9 | - | - |
p-level | ** | ** | * | ** | - | - | |
OTC | 138.6 | 167.2 | 28.6 | 266.8 | 313.9 | 47.1 | |
糙皮桦 | CK | 139.8 | 169.5 | 29.7 | 247.1 | 290.6 | 43.5 |
p-level | NS | * | * | ** | ** | ** |
图4 单叶面积(糙皮桦)、针叶长度(岷江冷杉)生长过程及其生长速率 OTC、CK: 同图1 See Fig. 1
Fig. 4 Growth process of single leaf area (Betula utilis) and needle length (Abies faxoniana) and their growth rates
物 种 Species | 芽长 Bud length (mm) | 单叶面积或叶长 Single leaf area (cm2) or needle length (mm) | 单株叶数量 Leaf number per plant (n) | 基径相对生长率 RGA of basal diameter (%) | 单株总叶面积 Total leaf area per plant (cm2) | 叶长宽比 Ratio of leaf length and leaf width | |
---|---|---|---|---|---|---|---|
冷杉 | OTC | 5.54±0.26 | 24.52±0.84 | 1126.6±286.3 | 11.86±1.83 | - | 0.31±0.056 |
CK | 5.24±0.35 | 23.15±0.72 | 1255.4±320.6 | 10.82±1.78 | - | 0.28±0.062 | |
p | ** | * | NS | ** | - | * | |
糙皮桦 | OTC | 4.47±0.32 | 11.30±3.10 | 295.4±39.1 | 16.1±1.58 | 2993.2±424.3 | 1.39±0.12 |
CK | 4.36±0.28 | 8.80±2.60 | 328.8±42.1 | 14.9±1.73 | 2710.7±318.2 | 1.53±0.11 | |
p | NS | ** | ** | * | * | ** |
表2 模拟增温对糟皮桦和岷江冷杉芽长、叶大小形状、叶分布特征及基径相对生长率的影响
Table 2 Effects of simulated global warming on bud length, leaf size, leaf distribution and relative growth rate (RGR) of basal diameter of Abies faxoniana and Betula utilis
物 种 Species | 芽长 Bud length (mm) | 单叶面积或叶长 Single leaf area (cm2) or needle length (mm) | 单株叶数量 Leaf number per plant (n) | 基径相对生长率 RGA of basal diameter (%) | 单株总叶面积 Total leaf area per plant (cm2) | 叶长宽比 Ratio of leaf length and leaf width | |
---|---|---|---|---|---|---|---|
冷杉 | OTC | 5.54±0.26 | 24.52±0.84 | 1126.6±286.3 | 11.86±1.83 | - | 0.31±0.056 |
CK | 5.24±0.35 | 23.15±0.72 | 1255.4±320.6 | 10.82±1.78 | - | 0.28±0.062 | |
p | ** | * | NS | ** | - | * | |
糙皮桦 | OTC | 4.47±0.32 | 11.30±3.10 | 295.4±39.1 | 16.1±1.58 | 2993.2±424.3 | 1.39±0.12 |
CK | 4.36±0.28 | 8.80±2.60 | 328.8±42.1 | 14.9±1.73 | 2710.7±318.2 | 1.53±0.11 | |
p | NS | ** | ** | * | * | ** |
图6 糙皮桦和岷江冷杉OTC及CK内比叶面积、单株总枝数和单株总枝长 NS: p>0.05 *: p<0.05 **: p<0.01 OTC、CK: 同图1 See Fig. 1
Fig. 6 Specific leaf area, total branch number per plant and total branch length per plant forAbies faxoniana and Betula utilis in OTC and CK
[1] | Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Laine K, Levesque E, Marion G.M, Molgaard P, Raszhivin V, Robiuson CH, Starr G, Totoland Q, Welker JM, Wookey PM(1999). Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecological Monographs, 69,491-511. |
[2] | Ayres MP, Maclean SF (1987). Development of birch leaves and the growth energetics of Epirrita autumnata (Geometridae). Ecology, 68,558-568. |
[3] | Baker WL, Hongaker JJ, Weisberg PJ (1995). Using aerial photography and GIS to map the forest tundra ecotone in rocky Mountain National Park, Colorado, for global change research. Photogrammetric Engineering and Remote Sensing, 61,313-320. |
[4] | Billings WD(1992). Phytogeographic and evolutionary potential of the arctic flora and vegetation in a changing climate. In: Chapin FS Ⅲ, Jeffries RL, Reynolds JE eds. Arctic Ecosystems in a Changing Climate: an Ecophysiological Perspective. Academic Press, San Diego, California, 91-109. |
[5] | Chapin FS Ⅲ, Jefferies RL, Reynolds JF, Svoboda J (1992). Arctic plant physiological ecology in an ecosystem context. In: Chapin FS Ⅲ, Jefferies RL, Reynolds JF eds. Arctic Ecosystems in a Changing Climate: an Ecophysiological Perspective. Academic Press, San Diego, California, 441-452. |
[6] | Chapin FS Ⅲ, Shaver GR (1985). Individualistic growth response of tundra plant species species to environmental manipulations in the field. Ecology, 66,564-576. |
[7] | Chapin FS Ⅲ, Shaver GR (1996). Physiological and growth responses of arctic plants to a field experiment simulating climate change. Ecology, 77,822-840. |
[8] | Chapin FS Ⅲ, Shaver GR, Gublin AE, Nadelhoffer KJ, Laundre JA (1995). Responses of arctic tundra to experimental and observed changes in Climate. Ecology, 76,694-711. |
[9] | Farnsworth EJ, Núňez-Farfán J, Careaga SA, Bazzaz FA (1995). Phenology and growth of three temperature forest life forms in response to artificial soil warming. Journal of Ecology, 83,967-977. |
[10] | Ge QS (葛全胜), Zheng JY (郑景云), Zhang XX (张学霞) (2003). Study of Chinese climate and phenology change in past 40 years. Progress of Nature Science(自然科学进展), 13,1048-1053.. (in Chinese with English abstract) |
[11] |
Grabherr G, Gottfried M, Pauli H (1994). Climate effects of mountain plants. Nature, 369,448-450.
URL PMID |
[12] |
Gower ST, Reich PB, Son Y (1993). Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiology, 12,327-345.
URL PMID |
[13] | Hänninen H (1991). Does climate warming increase the risk of frost damage in northern trees? Plant, Cell and Environment, 14,449-454. |
[14] | Havström M, Callaghan TV, Jonasson S (1993). Differential growth responses of Cassiope tetragona, an arctic dwarf-shrub, to environmental perturbations among three contrasting high and sub-arctic sites. Oikos, 66,389-402. |
[15] | Henry GHR, Molau U (1997). Tundra plants and climate change: the International Tundra Experiment (ITEX). Global Change Biology, 3,1-9. |
[16] | Intergovernmental Panel on Climate Change IPCC (2007). The Physical Science Basis. The Fourth Assessment Report of Working Group. http://www.ipcc.ch/.Cited 14 May 2007 |
[17] | Isabelle C, Elisabet GB (2001). Phenology is a major determinant of tree species range. Ecology Letters, 4,500-510. |
[18] | Jones M (1985). Modular demography and form in silver birch. In: White J ed. Studies on Plant Demography: a Festschrift for John L. Harper. Academic Press, London, 223-237. |
[19] | Keeling CD, Chin JFS, Whorf TP (1996). Increased activity of northern vegetation inferred from atmospheric CO 2 measurements. Nature, 382,146-149. |
[20] | Kudo G (1992). Effect of snow-free duration on leaf lifespan of four alpine plant species. Canadian Journal of Botany, 70,1684-1688. |
[21] | Kudo G (1996). Intraspecific variation of leaf traits in several deciduous species in relation to length of growing season. Ecoscience, 3,483-489. |
[22] |
Luo TX, Luo J, Pan YD (2005). Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, eastern Tibetan Plateau. Oecologia, 142,261-273.
URL PMID |
[23] |
Mailleate L (1982). Structure dynamics of silver birch, the fate of bud. Journal of Applied Ecology, 19,203-218.
URL PMID |
[24] |
Murray MB, Smith RI, Leith ID (1994). Effects of elevated CO(2), nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage. Tree Physiology, 14,691-706.
URL PMID |
[25] | Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003). Phenological responses in maple to experimental atmospheric warming and CO 2 enrichment. Global Change Biology, 9,1792-1801. |
[26] | Olszyk D, Wise C, VanEss M, Apple M, Tingey D (1998). Phenology and growth of shoots, needles, and buds of Douglas-fir seedlings with elevated CO 2 and (or) temperature. Canadian Journal of Botany, 76,1991-2001. |
[27] |
Oreskes N (2004). The scientific consensus on climate change. Science, 306,1686.
URL PMID |
[28] |
Reich PB, Uhl C, Walters MB, Ellsworth DS (1991). Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia, 86,16-24.
DOI URL PMID |
[29] | Reich PB, Walters MB, Ellsworth DS (1992). Leaf lifespan in relation to leaf, plant, and stand characteristics among diverse ecosystem. Ecological Monographs, 62,365-392. |
[30] | Schwartz MD, Crawford TM (2001). Detecting energy balance modifications at the onset of spring. Physical Geography, 22,394-409. |
[31] |
Snyder L, Spano D, Duce P (2001). Temperature data for phonological models. International Journal of Biometeorology, 45,178-183.
DOI URL PMID |
[32] | Suzuki S, Kudo G (1997). Short-term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine on a temperate mountain, northern Japan. Global Change Biology, 3(Suppl.1),108-118. |
[33] | Suzuki S, Kudo G (2000). Responses of alpine shrubs to simulated environmental change during three years in the mid-latitude mountain, northern Japan. Ecography, 23,553-564. |
[34] |
Traidl-Hoffmann C, Kasche A, Menzel A, Jakob T, Thiel M, Ring J, Behrendt H (2003). Impact of pollen on human health: more than allergen carriers? International Archives of Allergy and Immunology. 131,1-13.
DOI URL PMID |
[35] | Wada N, Shimoni M, Miyamoto M, Kojima S (2002). Warming effects on shoot development growth and biomass production in sympatric evergreen alpine dwarf shrubs Empetrum nigrum and Loiseleuria procumbens. Ecological Research, 17,125-132. |
[36] | Wookey PA, Parsons AN, Welker JM, Potter JA, Callaghan TV, Lee JA, Press MC (1993). Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants. Oikos, 67,490-502. |
[37] | Xian JR (鲜骏仁), Hu TX (胡庭兴), Wang KY (王开运), Zhang YB (张远彬) (2004). Characteristics of gap in sub-alpine coniferous forest in western Sichuan. Chinese Journal of Ecology(生态学杂志), 23(3),6-10. (in Chinese with English abstract) |
[38] | Xian JR (鲜骏仁), Hu TX (胡庭兴), Zhang YB (张远彬), Wang KY (王开运) (2007). Effects of forest canopy gap on Abies faxoniana seeding’s biomass and its allocation in sub-alpine coniferous forest of West Sichuan. Chinese Journal of Applied Ecology(应用生态学报), 18,721-727. (in Chinese with English abstract) |
[39] | Xiao CW (肖春旺), Zhou GS (周广胜), Ma FY (马风云) (2002). Effect of water supply change on morphology and growth of dominant plants in Maowusu Sandland. Acta Phytoecologica Sinica(植物生态学报), 26,69-76. (in Chinese with English abstract) |
[40] | Zhang Y, Welker JM (1996). Tibetan tundra responses to simulated changes in climate: aboveground biomass and community responses. Arctic and Alpine Research, 28,203-209. |
[41] | Zhu XB (朱旭斌), Sun SC (孙书存) (2006). Leaf phrenology of woody species in deciduous broad-leaved oak forests in Nanjing area, East China. Acta Phytoecologica Sinica (植物生态学报), 30,25-32. (in Chinese with English abstract) |
[42] | Zhou HK (周华坤), Zhou XM (周兴民), Zhao XQ (赵新全) (2000). A preliminary study of the influence of simulated greenhouse effect on a Kobresia humilis meadow. Acta Phytoecologica Sinica (植物生态学报), 24,547-553. (in Chinese with English abstract) |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[4] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[5] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[6] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[7] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[8] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[9] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[10] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[11] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[12] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[13] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[14] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[15] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19