植物生态学报 ›› 2016, Vol. 40 ›› Issue (10): 1028-1036.DOI: 10.17521/cjpe.2016.0068
所属专题: 全球变化与生态系统; 生态学研究的方法和技术; 青藏高原植物生态学:种群生态学
朱军涛*
出版日期:
2016-10-10
发布日期:
2016-11-02
通讯作者:
朱军涛
基金资助:
Jun-Tao ZHU*
Online:
2016-10-10
Published:
2016-11-02
Contact:
Jun-Tao ZHU
摘要:
全球气候变暖对高寒和极地地区的植物物候产生强烈的影响。该研究主要关注增温条件下藏北高寒草甸不同功能型植物繁殖时间(生殖物候)的改变。实验采用开顶箱式增温方法, 对3个主要功能群浅根-早花、浅根-中花和深根-晚花植物的现蕾、开花、结实时间进行观测。研究结果表明: (1)增温导致了土壤水分胁迫, 显著推迟了浅根-早花植物高山嵩草(Kobresia pygmaea)的繁殖时间; (2)增温显著提前了浅根-中花植物钉柱委陵菜(Potentilla saundersiana)和深根晚花植物紫花针茅(Stipa purpurea)和矮羊茅(Festuca coelestis)的繁殖时间; (3)增温没有显著影响浅根-中花植物楔叶委陵菜(Potentilla cuneata)和深根-晚花植物无茎黄鹌菜(Youngia simulatrix)的繁殖时间; (4)增温缩短了3种类型植物的开花持续时间。这些结果显示增温改变了藏北高寒草甸群落中多数物种的繁殖时间, 这预示着在未来更热更干的生长季, 青藏高原高寒草甸系统的植物物候格局可能会被重塑。
朱军涛. 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 2016, 40(10): 1028-1036. DOI: 10.17521/cjpe.2016.0068
Jun-Tao ZHU. Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 2016, 40(10): 1028-1036. DOI: 10.17521/cjpe.2016.0068
处理 Treatment | 氮含量 N content (%) | 碳含量 C content (%) | 磷含量 P content (mg∙g-1) | C:N |
---|---|---|---|---|
增温T4 Warming T4 | 0.22 ± 0.04 | 2.42 ± 0.52 | 0.75 ± 0.04 | 11.00 ± 0.32 |
增温T3 Warming T3 | 0.24 ± 0.06 | 2.31 ± 0.65 | 0.73 ± 0.05 | 9.63 ± 0.55 |
增温T2 Warming T2 | 0.21 ± 0.05 | 2.35 ± 0.74 | 0.74 ± 0.04 | 11.19 ± 0.74 |
增温T1 Warming T1 | 0.25 ± 0.07 | 2.40 ± 0.55 | 0.72 ± 0.03 | 9.60 ± 0.65 |
对照 Control | 0.25 ± 0.06 | 2.53 ± 0.61 | 0.75 ± 0.04 | 10.12 ± 0.44 |
表1 不同增温处理下土壤C、N、P 含量及C:N的差异(平均值±标准误差)
Table 1 Soil C, N, P contents and C:N for each treatments (mean ± SE)
处理 Treatment | 氮含量 N content (%) | 碳含量 C content (%) | 磷含量 P content (mg∙g-1) | C:N |
---|---|---|---|---|
增温T4 Warming T4 | 0.22 ± 0.04 | 2.42 ± 0.52 | 0.75 ± 0.04 | 11.00 ± 0.32 |
增温T3 Warming T3 | 0.24 ± 0.06 | 2.31 ± 0.65 | 0.73 ± 0.05 | 9.63 ± 0.55 |
增温T2 Warming T2 | 0.21 ± 0.05 | 2.35 ± 0.74 | 0.74 ± 0.04 | 11.19 ± 0.74 |
增温T1 Warming T1 | 0.25 ± 0.07 | 2.40 ± 0.55 | 0.72 ± 0.03 | 9.60 ± 0.65 |
对照 Control | 0.25 ± 0.06 | 2.53 ± 0.61 | 0.75 ± 0.04 | 10.12 ± 0.44 |
图1 植物生长季不同增温处理下平均气温(°C, A)、5 cm土壤温度(°C, B)、土壤湿度(%, C)及降水量(mm, D)。
Fig. 1 Mean air temperature (°C, A), soil temperature at 5 cm depth (°C, B), soil moisture (%, C) at 5 cm depth and precipitation (mm, D) during the growing seasons under different warming treatments.
处理 Treatment | 现蕾时间 Budding time | 开花时间 Flowering time | 结果时间 Fruiting time | 开花持续 Flowering duration | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | ||||
增温 Warming | 4 | 2.92 | 0.03 | 1.84 | 0.13 | 3 | 1.13 | 0.35 | 39.46 | 0.00 | |||||
物种 Species | 5 | 1 153.39 | 0.00 | 2 567.89 | 0.00 | 5 | 2 268.60 | 0.00 | 589.42 | 0.00 | |||||
增温×物种 Warming × species | 20 | 31.54 | 0.00 | 24.97 | 0.00 | 15 | 12.74 | 0.00 | 2.30 | 0.00 |
表2 增温处理和植物种类对现蕾、开花和结果时间及开花持续时间的影响
Table 2 Results (F value) of two-way ANOVA on the effects of warming, plant species and their interactions on budding time, flowering time, fruiting time and flowering duration
处理 Treatment | 现蕾时间 Budding time | 开花时间 Flowering time | 结果时间 Fruiting time | 开花持续 Flowering duration | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | ||||
增温 Warming | 4 | 2.92 | 0.03 | 1.84 | 0.13 | 3 | 1.13 | 0.35 | 39.46 | 0.00 | |||||
物种 Species | 5 | 1 153.39 | 0.00 | 2 567.89 | 0.00 | 5 | 2 268.60 | 0.00 | 589.42 | 0.00 | |||||
增温×物种 Warming × species | 20 | 31.54 | 0.00 | 24.97 | 0.00 | 15 | 12.74 | 0.00 | 2.30 | 0.00 |
图2 增温处理对各物种的现蕾(A)、开花(B)和结果(C)时间的影响(平均值±标准误差)。图中正值代表与对照相比推后的天数, 负值代表与对照相比提前的天数; *代表增温处理与对照相比差异显著(p < 0.05)。
Fig. 2 Changes in the onset of budding, flowering and fruiting (in days) in four experimental treatments [i.e., T1, T2, T3, T4] compared with the control in 2014 (A, B, C) (mean ± SE). A positive value indicates later budding, flowering or fruiting than the control; a negative value indicates earlier budding, flowering or fruiting than the control. Data are mean ± SE for advanced or delayed phenology, respectively. “*” indicates significant difference between treatment and the control.
物种 Species | 增温T1 Warming T1 | 增温T2 Warming T2 | 增温T3 Warming T3 | 增温T4 Warming T4 |
---|---|---|---|---|
高山嵩草 Kobresia pygmaea | 0 | 0 | 1 | 1 |
钉柱委陵菜 Potentilla saundersiana | 0 | 0 | 1 | 1 |
楔叶委陵菜 Potentilla cuneata | 0 | 1 | 1 | 1 |
紫花针茅 Stipa purpurea | 1 | 1 | 1 | 1 |
矮羊茅 Festuca coelestis | 0 | 0 | 0 | 1 |
无茎黄鹌菜 Youngia simulatrix | 0 | 1 | 1 | 1 |
表3 增温处理对各物种开花持续时间影响的F检验
Table 3 Results of Fisher test showing the differences of the flowering duration for each species among treatments (T1, T2, T3, T4)
物种 Species | 增温T1 Warming T1 | 增温T2 Warming T2 | 增温T3 Warming T3 | 增温T4 Warming T4 |
---|---|---|---|---|
高山嵩草 Kobresia pygmaea | 0 | 0 | 1 | 1 |
钉柱委陵菜 Potentilla saundersiana | 0 | 0 | 1 | 1 |
楔叶委陵菜 Potentilla cuneata | 0 | 1 | 1 | 1 |
紫花针茅 Stipa purpurea | 1 | 1 | 1 | 1 |
矮羊茅 Festuca coelestis | 0 | 0 | 0 | 1 |
无茎黄鹌菜 Youngia simulatrix | 0 | 1 | 1 | 1 |
[1] | Ashe XH (2013). Effects of Warming and Precipitation Regime on Plant Phenology and Productivity in an Alpine Meadow, Northwestern Sichuan, China. Master degree dissertation, Chengdu University of Technology, Chengdu.(in Chinese with English abstract)[阿舍小虎 (2013). 模拟增温与降水改变对川西北高寒草甸植物物候及初级生产力的影响. 硕士学位论文, 成都理工大学, 成都.] |
[2] | Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M (1999). Response patterns of tundra plant species to experimental warming: A meta-analysis of the international tundra experiment.Ecological Monographs, 69, 491-511. |
[3] | Bjorkman AD, Elmendorf SC, Beamish AL, Vellend M, Henry GHR (2015). Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.Global Change Biology, 21, 4651-4661. |
[4] | Chmielewski FM, Rötzer T (2001). Response of tree phenology to climate change across Europe.Agricultural and Forest Meteorology, 108, 101-112. |
[5] | Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006). Diverse responses of phenology to global changes in a grassland ecosystem.Proceedings of the National Academy of Sciences of the United States of America, 103, 13740. |
[6] | Cook BI, Wolkovich EM, Parmesan C (2012). Divergent responses to spring and winter warming drive community level flowering trends.Proceedings of the National Academy of Sciences of the United States of America, 109, 9000-9005. |
[7] | Dorji T, Totland Ø, Moe S, Hopping KA, Pan JB, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet.Global Change Biology, 19, 459-472. |
[8] | Dunne JA, Harte J, Taylor KJ (2003). Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods.Ecological Monographs, 73, 69-86. |
[9] | Fitter AH, Fitter RSR (2002). Rapid changes in flowering time in British plants. Science, 296, 1689-1691. |
[10] | Franks SJ, Sim S, Weis AE (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation.Proceedings of the National Academy of Sciences of the United States of America, 104, 1278-1282. |
[11] | Goldman DA, Willson MF (1986). Sex allocation in functionally hermaphroditic plants: A review and critique.Botanical Review, 52, 157-194. |
[12] | Gu S, Hui D, Bian A (1998). The contraction-expansion algorithm and its use in fitting nonlinear equations.International Journal of Biomathematics, 13, 426-434. |
[13] | Hoffmann AA, Camac JS, Williams RJ, Papst W, Jarrad FC, Wahren C-H (2010). Phenological changes in six Australian subalpine plants in response to experimental warming and year-to-year variation.Journal of Ecology, 98, 927-937. |
[14] | Hollister RD, Webber PJ, Bay C (2005). Plant response to temperature in northern Alaska: Implications for predicting vegetation change.Ecology, 86, 1562-1570. |
[15] | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin DH, Manning M, Marquis M, Chen ZL, Averyt K, Tignor M, Miller HL eds. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[16] | Klein JA, Harte J, Zhao XQ (2008). Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau.Ecosystems, 11, 775-789. |
[17] | Kliber A, Eckert CG (2004). Sequential decline in allocation among flowers within Inflorescences: Proximate mechanism and adaptive significance. Ecology, 85, 1675-1687. |
[18] | Li YH, Han GD, Wang Z, Zhao ML, Wang ZW, Zhao HB (2014). Influences of warming and nitrogen addition on plant reproductive phenology in Inner Mongolia desert steppe.Chinese Journal of Ecology, 33, 849-856.(in Chinese with English abstract)[李元恒, 韩国栋, 王珍, 赵萌莉, 王正文, 赵鸿彬 (2014). 增温和氮素添加对内蒙古荒漠草原植物生殖物候的影响. 生态学杂志,33, 849-856.] |
[19] | Piao SL, Fang JY, Zhou LM, Philippe C, Zhu B (2006). Variations in satellite-derived phenology in China’s temperate vegetation.Global Change Biology, 12, 672-685. |
[20] | Porporato A, Laio F, Ridolfi L, Rodriguez-Iturbe I (2001). Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: III. Vegetation water stress.Advances in Water Resources, 24, 725-744. |
[21] | Post ES, Pedersen C, Wilmers CC, Forchhammer MC (2008). Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89, 363-370. |
[22] | Price MV, Waser NM (1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow.Ecology, 79, 1261-1271. |
[23] | Richards FJ (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290-301. |
[24] | Rutishauser T, Stockli R, Harte J, Kueppers L (2012). Climate change: Flowering in the greenhouse.Nature, 485, 448-449. |
[25] | Sherry RA, Zhou XH, Gu SL, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo YQ (2007). Divergence of reproductive phenology under climate warming.Proceedings of the National Academy of Sciences of the United States of America, 104, 198-202. |
[26] | Springate DA, Kover PX (2014). Plant responses to elevated temperatures: A field study on phenological sensitivity and fitness responses to simulated climate warming.Global Change Biology, 20, 456-465. |
[27] | Visser ME, Both C (2005). Shifts in phenology due to global climate change: The need for a yardstick.Proceedings of the Royal Society Biological Sciences, 272, 2561-2569. |
[28] | Wang SP, Meng FD, Duan JC, Wang YF, Cui XY, Piao SL, Niu HS, Xu GP, Luo CY, Zhang ZH, Zhu XX, Shen MG, Li YN, Du MY, Tang YH, Zhao XQ, Ciais PB, Kimball B, Peñuelas J, Janssens IA, Cui SJ, Zhao L, Zhang FW (2014). Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants.Ecology, 95, 3387-3398. |
[29] | Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494-497. |
[30] | Xia J, Wan S (2013). Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe.Annals of Botany, 111, 1207-1217. |
[31] | Yu H, Luedeling E, Xu J (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau.Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156. |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[3] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[4] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[5] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[6] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[7] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[8] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[9] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[10] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[11] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[12] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[13] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[14] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[15] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19