植物生态学报 ›› 2017, Vol. 41 ›› Issue (4): 439-449.DOI: 10.17521/cjpe.2016.0331
所属专题: 入侵生态学
古春凤1,2, 叶小齐2, 吴明2,*(), 邵学新2, 焦盛武2
收稿日期:
2016-10-27
接受日期:
2017-02-28
出版日期:
2017-04-10
发布日期:
2017-05-19
通讯作者:
吴明
基金资助:
Chun-Feng GU1,2, Xiao-Qi YE2, Ming WU2,*(), Xue-Xin SHAO2, Sheng-Wu JIAO2
Received:
2016-10-27
Accepted:
2017-02-28
Online:
2017-04-10
Published:
2017-05-19
Contact:
Ming WU
摘要:
大量使用草甘膦防除外来植物将会改变入侵植物与邻近植物之间的相互关系。该文通过分析不同浓度草甘膦对植物生长和种间竞争关系的影响, 以揭示除草剂作用下植物种间关系的变化规律, 为进一步研究草甘膦的生态效应提供理论参考, 为优化农药使用提供数据支持。2016年6至8月, 在国家林业局杭州湾湿地生态系统定位观测研究站, 采用盆栽控制试验方法, 将入侵植物加拿大一枝黄花(Solidago canadensis)和土著植物白茅(Imperata cylindrica)分别进行单独种植和混种种植, 喷施7种浓度的草甘膦后测定植物的生长特征。结果显示: 草甘膦处理显著抑制了加拿大一枝黄花和白茅的生长。随着草甘膦处理浓度升高, 加拿大一枝黄花的株高增长量明显降低、绿叶数不断减少, 0.3-1.5 mL·L-1处理组单种、混种加拿大一枝黄花的绿叶数均随时间呈递增趋势, 而1.8 mL·L-1处理单种、混种加拿大一枝黄花基本枯萎死亡; 白茅的分蘖死亡数和枯萎叶片长均随草甘膦处理浓度递增而不断增长, 0.3-0.6 mL·L-1处理组单种、混种白茅分蘖数和绿叶长度随时间呈增加趋势。草甘膦处理显著影响植物种间竞争关系, 随着处理浓度上升, 混种加拿大一枝黄花和白茅之间的竞争关系不断减弱。种间竞争关系显著影响了加拿大一枝黄花的生物量分配, 面对竞争时加拿大一枝黄花将更多的生物量分配到根部, 因而增加了根冠比; 种间竞争抑制了白茅分蘖数的增加和生物量的积累, 但不影响其植株生物量的分配。草甘膦处理和种间关系的交互作用同样显著影响加拿大一枝黄花和白茅生物量的增加, 但对两种植物根冠比的影响均不显著。结果表明: 不同植物对草甘膦的耐受性不同, 与本土植物白茅相比, 生长能力强的入侵植物加拿大一枝黄花对草甘膦处理具有更强的耐受性; 低浓度草甘膦处理减弱了两种植物之间的竞争关系, 可能会干扰入侵地植物群落的结构和动态。
古春凤, 叶小齐, 吴明, 邵学新, 焦盛武. 草甘膦对加拿大一枝黄花和伴生植物白茅种间竞争关系的影响. 植物生态学报, 2017, 41(4): 439-449. DOI: 10.17521/cjpe.2016.0331
Chun-Feng GU, Xiao-Qi YE, Ming WU, Xue-Xin SHAO, Sheng-Wu JIAO. Effects of glyphosate on interspecific competition between Solidago canadensis and Imperata cylindrica. Chinese Journal of Plant Ecology, 2017, 41(4): 439-449. DOI: 10.17521/cjpe.2016.0331
草甘膦处理 Glyphosate treatment | 植株死亡率 Plant mortality rate (%) | |||
---|---|---|---|---|
单种加拿大一枝黄花 S. canadensis grown in monoculture | 混种加拿大一枝黄花 S. canadensis grown in mixture | 单种白茅 I. cylindrica grown in monoculture | 混种白茅 I. cylindrica grown in mixture | |
G0 | 0.00 ± 0.00aA | 0.00 ± 0.00aA | 0.00 ± 0.00aA | 0.00 ± 0.00aA |
G0.3 | 0.00 ± 0.00aA | 0.00 ± 0.00aA | 0.00 ± 0.00aA | 0.00 ± 0.00aA |
G0.6 | 14.28 ± 10.71aA | 0.00 ± 0.00aB | 14.29 ± 9.22bA | 14.29 ± 9.22aA |
G0.9 | 7.14 ± 4.61aA | 7.14 ± 7.14aA | 39.29 ± 12.02bA | 7.14 ± 7.14aA |
G1.2 | 25.00 ± 14.43abA | 0.00 ± 0.00aB | 71.43 ± 12.71cA | 50.00 ± 15.43bA |
G1.5 | 21.43 ± 8.50abA | 50.00 ± 10.91bA | 89.29 ± 7.43cA | 57.14 ±14.86bcB |
G1.8 | 46.43 ± 14.86bA | 64.29 ± 14.28bA | 92.86 ± 7.14cA | 85.71 ± 9.2bA |
表1 不同浓度草甘膦处理下加拿大一枝黄花和白茅植株的累计死亡率(平均值±标准误差)
Table 1 Plant mortality rate of Solidago canadensis and Imperata cylindrica treated with different concentrations of glyphosate (mean ± SE)
草甘膦处理 Glyphosate treatment | 植株死亡率 Plant mortality rate (%) | |||
---|---|---|---|---|
单种加拿大一枝黄花 S. canadensis grown in monoculture | 混种加拿大一枝黄花 S. canadensis grown in mixture | 单种白茅 I. cylindrica grown in monoculture | 混种白茅 I. cylindrica grown in mixture | |
G0 | 0.00 ± 0.00aA | 0.00 ± 0.00aA | 0.00 ± 0.00aA | 0.00 ± 0.00aA |
G0.3 | 0.00 ± 0.00aA | 0.00 ± 0.00aA | 0.00 ± 0.00aA | 0.00 ± 0.00aA |
G0.6 | 14.28 ± 10.71aA | 0.00 ± 0.00aB | 14.29 ± 9.22bA | 14.29 ± 9.22aA |
G0.9 | 7.14 ± 4.61aA | 7.14 ± 7.14aA | 39.29 ± 12.02bA | 7.14 ± 7.14aA |
G1.2 | 25.00 ± 14.43abA | 0.00 ± 0.00aB | 71.43 ± 12.71cA | 50.00 ± 15.43bA |
G1.5 | 21.43 ± 8.50abA | 50.00 ± 10.91bA | 89.29 ± 7.43cA | 57.14 ±14.86bcB |
G1.8 | 46.43 ± 14.86bA | 64.29 ± 14.28bA | 92.86 ± 7.14cA | 85.71 ± 9.2bA |
图1 不同时期喷施草甘膦后加拿大一枝黄花的形态指标(平均值±标准误差)。A, B, 单种加拿大一枝黄花。C, D, 混种加拿大一枝黄花。G0、G0.3、G0.6、G0.9、G1.2、G1.5和G1.8同表1。
Fig. 1 The growth indices of Solidago canadensis after spraying glyphosate at different growth stages (mean ± SE). A, B, S. canadensis grown in monoculture. C, D, S. canadensis grown in mixture. G0, G0.3, G0.6, G0.9, G1.2, G1.5 and G1.8 see Table 1.
图2 不同时期喷施草甘膦后白茅的形态指标(平均值±标准误差)。A, B, 单种白茅。C, D, 混种白茅。G0、G0.3、G0.6、G0.9、G1.2、G1.5和G1.8同表1。
Fig. 2 The growth indices of Imperata cylindrica after spraying glyphosate at different growth stages (mean ± SE). A, B, I. cylindrica grown in monoculture. C, D, I. cylindrica grown in mixture. G0, G0.3, G0.6, G0.9, G1.2, G1.5 and G1.8 see Table 1.
生长指标 Growth index | 种植方式 Planting method | 草甘膦处理 Glyphosate treatment | 交互作用 Interaction | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
加拿大一枝黄花 S. canadensis | ||||||
总生物量 Total biomass | 69.695 | 0.000** | 20.433 | 0.000** | 2.965 | 0.011* |
地上生物量 Aboveground biomass | 82.594 | 0.000** | 20.185 | 0.000** | 0.473 | 0.030* |
地下生物量 Underground biomass | 22.363 | 0.000** | 11.761 | 0.000** | 2.881 | 0.013* |
株高 Plant height | 18.520 | 0.000** | 18.010 | 0.000** | 3.000 | 0.010* |
绿叶数 Green leaf number | 0.604 | 0.439 | 11.192 | 0.000** | 1.621 | 0.151 |
根冠比 Root /shoot ratio | 6.773 | 0.011* | 0.826 | 0.553 | 1.643 | 0.145 |
植株死亡率 Plant mortality rate | 0.012 | 0.912 | 11.057 | 0.000** | 2.336 | 0.039* |
白茅 I. cylindrica | ||||||
总生物量 Total biomass | 37.776 | 0.000** | 37.701 | 0.000** | 7.802 | 0.000** |
地上生物量 Aboveground biomass | 32.195 | 0.000** | 29.126 | 0.000** | 5.642 | 0.000** |
地下生物量 Underground biomass | 36.954 | 0.000** | 36.851 | 0.000** | 8.675 | 0.000** |
分蘖数 Tiller number | 13.195 | 0.000** | 50.831 | 0.000** | 5.75 | 0.000** |
绿叶长度 Length of green leaf | 1.379 | 0.244 | 52.523 | 0.000** | 1.254 | 0.288 |
根冠比 Root/shoot ratio | 0.615 | 0.435 | 0.599 | 0.730 | 2.357 | 0.058 |
植株死亡率 Plant mortality rate | 5.242 | 0.025** | 34.112 | 0.000** | 0.971 | 0.450 |
表2 种植方式和草甘膦处理对加拿大一枝黄花和白茅生长指标的影响
Table 2 Effects of planting method and glyphosate treatment on the growth of Solidago canadensis and Imperata cylindrica
生长指标 Growth index | 种植方式 Planting method | 草甘膦处理 Glyphosate treatment | 交互作用 Interaction | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
加拿大一枝黄花 S. canadensis | ||||||
总生物量 Total biomass | 69.695 | 0.000** | 20.433 | 0.000** | 2.965 | 0.011* |
地上生物量 Aboveground biomass | 82.594 | 0.000** | 20.185 | 0.000** | 0.473 | 0.030* |
地下生物量 Underground biomass | 22.363 | 0.000** | 11.761 | 0.000** | 2.881 | 0.013* |
株高 Plant height | 18.520 | 0.000** | 18.010 | 0.000** | 3.000 | 0.010* |
绿叶数 Green leaf number | 0.604 | 0.439 | 11.192 | 0.000** | 1.621 | 0.151 |
根冠比 Root /shoot ratio | 6.773 | 0.011* | 0.826 | 0.553 | 1.643 | 0.145 |
植株死亡率 Plant mortality rate | 0.012 | 0.912 | 11.057 | 0.000** | 2.336 | 0.039* |
白茅 I. cylindrica | ||||||
总生物量 Total biomass | 37.776 | 0.000** | 37.701 | 0.000** | 7.802 | 0.000** |
地上生物量 Aboveground biomass | 32.195 | 0.000** | 29.126 | 0.000** | 5.642 | 0.000** |
地下生物量 Underground biomass | 36.954 | 0.000** | 36.851 | 0.000** | 8.675 | 0.000** |
分蘖数 Tiller number | 13.195 | 0.000** | 50.831 | 0.000** | 5.75 | 0.000** |
绿叶长度 Length of green leaf | 1.379 | 0.244 | 52.523 | 0.000** | 1.254 | 0.288 |
根冠比 Root/shoot ratio | 0.615 | 0.435 | 0.599 | 0.730 | 2.357 | 0.058 |
植株死亡率 Plant mortality rate | 5.242 | 0.025** | 34.112 | 0.000** | 0.971 | 0.450 |
图3 不同草甘膦浓度处理对加拿大一枝黄花植株总生物量(A)、地上生物量(B)、地下生物量(C)、根冠比(D)的影响(平均值±标准误差)。不同小写、大写字母分别表示单种、混种植物在不同处理浓度之间的差异显著(p < 0.05)。G0、G0.3、G0.6、G0.9、G1.2、G1.5和G1.8同表1。
Fig. 3 Effects of different concentrations of glyphosate on total biomass (A), aboveground biomass (B), belowground biomass (C) and root/shoot ratio (D) of Solidago canadensis (mean ± SE). Different lowercase letters indicate that the indices are significantly different among different concentrations of glyphosate (p < 0.05) for plants grown in monocultures. Different uppercase letters indicate that the indices are significantly different among different concentrations of glyphosate (p < 0.05) for plants grown in mixtures. G0, G0.3, G0.6, G0.9, G1.2, G1.5 and G1.8 see Table 1.
图4 不同草甘膦浓度处理对白茅植株总生物量(A)、地上生物量(B)、地下生物量(C)、根冠比(D)的影响(平均值±标准误差)。不同小写、大写字母分别表示单种、混种植物在不同处理浓度之间的差异显著(p < 0.05)。G0、G0.3、G0.6、G0.9、G1.2、G1.5和G1.8同表1。
Fig. 4 Effects of different concentrations of glyphosate on total biomass (A), aboveground biomass (B), belowground biomass (C) and root/shoot ratio (D) of Imperata cylindrica (mean ± SE). Different lowercase letters indicate that the indices are significantly different among different concentrations of glyphosate (p < 0.05) for plants grown in monocultures. Different uppercase letters indicate that the indices are significantly different among different concentrations of glyphosate (p < 0.05) for plants grown in mixtures. G0, G0.3, G0.6, G0.9, G1.2, G1.5 and G1.8 see Table 1.
图5 不同浓度草甘膦处理对加拿大一枝黄花(A)和白茅(B)相对产量的影响(平均值±标准误差)。不同小写字母表示在不同处理浓度之间差异显著(p < 0.05)。G0、G0.3、G0.6、G0.9、G1.2、G1.5和G1.8同表1。
Fig. 5 Effects of different concentrations of glyphosate on the relative yields of Solidago canadensis (A) and Imperata cylindrica (B) (mean ± SE). Different lowercase letters indicate that relative yields are significantly different among different concentrations of glyphosate (p < 0.05). G0, G0.3, G0.6, G0.9, G1.2, G1.5 and G1.8 see Table 1.
[1] | Bai SH, Ma FY, Hou D, Wang D (2010).Change in population niche during vegetation community succession in the Yellow River Delta.Chinese Journal of Eco-agriculture, 18, 581-587. (in Chinese with English abstract)[白世红, 马风云, 侯栋, 王迪 (2010). 黄河三角洲植被演替过程种群生态位变化研究. 中国生态农业学报, 18, 581-587.] |
[2] | Ban ZH, Wang Q (2015).Responses of the competition between Alternanthera philoxeroides and Sambucus chinensis to simulated warming. Chinese Journal of Plant Ecology, 39, 43-51. (in Chinese with English abstract)[班芷桦, 王琼 (2015). 喜旱莲子草和接骨草竞争对模拟增温的响应. 植物生态学报, 39, 43-51.] |
[3] | Brooker RW (2008). Facilitation in plant communities: The past, the present, and the future.Journal of Ecology, 95, 1-19. |
[4] | Brooker RW (1998). The balance between positive and negative plant interactions and its relationship to environmental gradients: A model.Oikos, 81, 196-207. |
[5] | Callaway RR (2002). Positive interactions among alpine plants increase with stress.Nature, 417, 844-848. |
[6] | Chen JC, Zhang CX, Huang HJ, Wei SH, Zhang M, Guo F (2011).Sensitivity to glyphosate and dynamics of shikimate accumulation in three weed species following glyphosate application.Chinese Journal of Pesticide Science, 13, 471-474. (in Chinese with English abstract)[陈景超, 张朝贤, 黄红娟, 魏守辉, 张猛, 郭峰 (2011). 三种杂草对草甘膦的敏感性及处理后植株体内莽草酸积累量差异. 农药学学报, 13, 471-474.] |
[7] | Chen JF, Xu HL, Sun YB, Huang LL, Zhang PX, Zou CP, Yu B, Zhu GF, Zhao CY (2016). Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China.Science of the Total Environment, 543, 197-205. |
[8] | Chen T, Liu WL, Zhang CB, Wang J (2012). Effects of Solidago canadensis invasion on dynamics of native plant communities and their mechanisms.Chinese Journal of Plant Ecology, 36, 253-261. (in Chinese with English abstract)[陈彤, 刘文莉, 张崇邦, 王江 (2012). 加拿大一枝黄花入侵对本土植物群落动态的影响及其机制. 植物生态学报, 36, 253-261.] |
[9] | Dong M, Lu JZ, Zhang WJ, Chen JK, Li B (2006).Canada goldenrod (Solidago canadensis): An invasive alien weed rapidly spreading in China. Acta Phytotaxonomica Sinica, 44, 72-85. (in Chinese with English abstract)[董梅, 陆建忠, 张文驹, 陈家宽, 李博 (2006). 加拿大一枝黄花——一种正在迅速扩张的外来入侵植物. 植物分类学报, 44, 72-85.] |
[10] | Duke SO, Powles SB (2008). Glyphosate: A once-in-a-century herbicide.Pest Manage Science, 64, 319-325. |
[11] | Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008). Restoration through reassembly: Plant traits and invasion resistance. Trends in Ecology and Evolution, 23, 695-703. |
[12] | Guo SL, Jiang HW, Fang F, Chen GQ (2009). Influences of herbicides, uprooting and use as cut flowers on sexual reproduction of Solidago canadensis. Weed Research, 49, 291-299. |
[13] | Gusev AP (2015). The impact of invasive Canadian goldenrod (Solidago canadensis L.) on regenerative succession in old fields. Russian Journal of Biological Invasions, 6(2), 74-77. |
[14] | He Q, Bertness MD, Altieri AH (2013). Global shifts towards positive species interactions with increasing environmental stress.Ecology Letters, 16, 695-706. |
[15] | Huang QQ, Shen YD, Li XX, Cheng HT, Song X, Fan ZW (2012). Research progress on the distribution and invasiveness of alien invasive plants in China.Ecology and Environment Sciences, 21, 977-985. (in Chinese with English abstract )[黄乔乔, 沈奕德, 李晓霞, 程汉亭, 宋鑫, 范志伟 (2012). 外来入侵植物在中国的分布及入侵能力研究进展. 生态环境学报, 21, 977-985.] |
[16] | Huang X, Li CJ, Nan ZB (2012).Competitive effects between Medicago sativa and Achnatherum inebrians. Acta Prataculturae Sinica, 21(1), 59-65. (in Chinese with English abstract)[黄玺, 李春杰, 南志标 (2012). 紫花苜蓿与醉马草的竞争效应. 草业学报, 21(1), 59-65.] |
[17] | Ju RT, Li H, Shih CJ, Li B (2012). Progress of biological invasions research in China over the last decade.Biodiversity Science, 20, 581-611. (in Chinese with English abstract)[鞠瑞亭, 李慧, 石正人, 李博 (2012). 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.] |
[18] | Keddy P, Nielsen K, Weiher E (2002). Relative competitive performance of 63 species of terrestrial herbaceous plants.Journal of Vegetation Science, 13, 5-16. |
[19] | Li GY, Hou XW, Deng X, Wang Z, Zhang GH, Li QF (2010). The effect on allelopathy of Wedelia chinensis Merr. resulting from herbicide. Chinese Agricultural Science Bulletin, 26(1), 173-181. (in Chinese with English abstract)[李光义, 侯宪文, 邓晓, 王中, 张桂花, 李勤奋 (2010). 除草剂对蟛蜞菊化感作用的影响研究. 中国农学通报, 26(1), 173-181.] |
[20] | Liu WJ, Liu Y, Huang XQ, Zhou XQ, Song J, Yin Q, Wang D, Tao L, Zhang FL, Chang LJ, Zhang L, Lei SR (2012). Impact of spraying glyphosate on growth and yield component of glyphosate-tolerant soybean at different growth stages.Scientia Agricultura Sinica, 45, 675-684. (in Chinese with English abstract)[刘文娟, 刘勇, 黄小琴, 周西全, 宋君, 尹全, 王东, 陶李, 张富丽, 常丽娟, 张蕾, 雷绍荣 (2012). 不同时期喷施草甘膦对抗草甘膦转基因大豆生长和产量构成的影响. 中国农业科学, 45, 675-684.] |
[21] | Lu Y, Sun GC, Zhu JY, Fan MJ, Mao HP (2006). Comparison of control effects of glyphosate application in different time onSolidago canadensis L. Weed Science, (1), 51-52. (in Chinese with English abstract)[陆彦, 孙国才, 朱建亚, 范美娟, 毛慧萍 (2006). 草甘膦防除加拿大一枝黄花不同时间用药效果比较. 杂草科学, (1), 51-52.] |
[22] | Lydon J, Duke SO (1988). Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants.Journal of Agricultural Food and Chemistry, 36, 813-818. |
[23] | Maestre FT, Callaway RM, Fernando V, Lortie CJ (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities.Journal of Ecology, 97, 199-205. |
[24] | Mullan CC, Kristy K, Halpern BS (2008). Interactive and cumulative effects of multiple human stressors in marine systems.Ecology Letters, 11, 1304-1315. |
[25] | Pan XB, Zhang JQ, Xu H, Zhang XL, Zhang W, Song HH, Zhu SF (2015). Spatial similarity in the distribution of invasive alien plants and animals in China.Natural Hazards, 77, 1751-1764. |
[26] | Peng H, Gui FR, Li ZY, Li J, Wan FH (2010). Competition effect ofImperata cylindrical to Ageratina adenophora. Chinese Journal of Ecology, 29, 1931-1936. (in Chinese with English abstract)[彭恒, 桂富荣, 李正跃, 李隽, 万方浩 (2010). 白茅对紫茎泽兰的竞争效应. 生态学杂志, 29, 1931-1936.] |
[27] | Ping XY, Zhou GS, Sun JS (2010). Advances in the study of photosynthetic allocation and its controls.Chinese Journal of Plant Ecology, 34, 100-111. (in Chinese with English abstract)[平晓燕, 周广胜, 孙敬松 (2010). 植物光合产物分配及其影响因子研究进展. 植物生态学报, 34, 100-111.] |
[28] | Qiang S (2009). Weed Science. 2nd edn. Agricultural Press of China, Beijing. 1-6. (in Chinese)[强胜 (2009). 杂草学. 第二版. 中国农业出版社, 北京. 1-6.] |
[29] | Qiang S, Chen GJ, Li BP, Meng L (2010). Invasive alien species in Chinese agricultural ecosystems and their management.Biodiversity Science, 18, 647-659. (in Chinese with English abstract)[强胜, 陈国奇, 李保平, 孟玲 (2010). 中国农业生态系统外来种入侵及其管理现状. 生物多样性, 18, 647-659.] |
[30] | Thorpe AS, Aschehoug ET, Atwater DZ, Callaway RM (2011). Interactions among plants and evolution.Journal of Ecology, 99, 729-740. |
[31] | Wang CY, Xiao HG, Zhao LL, Liu J, Wang L, Zhang F, Shi YC, Du DL (2016). The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition. Ecotoxicology, 25, 555-562. |
[32] | Wang XJ, Lang ZH, Shan AS, Huang DF (2008). Advances in mechanism of herbicide in inhibiting amino acid biosynthesis and herbicide-tolerant transgenic plants.China Biotechnology, 28, 110-116. (in Chinese with English abstract)[王秀君, 郎志宏, 单安山, 黄大昉 (2008). 氨基酸生物合成抑制剂类除草剂作用机理及耐除草剂转基因植物研究进展. 中国生物工程杂志, 28, 110-116.] |
[33] | Weidenhamer JR (2010). Direct and indirect effects of invasive plants on soil chemistry and ecosystem function.Journal of Chemical Ecology, 36, 59-69. |
[34] | Williams AC, McCarthy BC (2001). A new index of interspecific competition for replacement and additive designs.Ecological Research, 16, 29-40. |
[35] | Xu ZH, Wang YP (2004). Disastrous mechanisms and control strategies of alien invasive plants.Chinese Journal of Ecology, 23, 124-127. (in Chinese with English abstract)[徐正浩, 王一平 (2004). 外来入侵植物成灾的机制及防除对策. 生态学杂志, 23, 124-127.] |
[36] | Yang LQ, Liao FY, Zhao K, Xu Q, Feng JS, Wu HQ (2011). The effects of different herbicide on the growth of Solidago canadensis. Journal of Central South University of Forestry & Technology, 31(4), 109-113. (in Chinese with English abstract)[杨柳青, 廖飞勇, 赵坤, 许潜, 冯家生, 吴红强 (2011). 不同除草剂对加拿大一枝黄花生长的影响. 中南林业科技大学学报, 31(4), 109-113.] |
[37] | Yang RY, Zan ST, Tang JJ, Chen X (2011).Invasion mechanisms of Solidago canadensis L.: A review.Acta Ecologica Sinica, 31, 1185-1194. (in Chinese with English abstract)[杨如意, 昝树婷, 唐建军, 陈欣 (2011). 加拿大一枝黄花的入侵机理研究进展. 生态学报, 31, 1185-1194.] |
[38] | Zhang RH (2010). Research on Screening of Replacement Plants for Flaveria bidentis and Competition Between Replacement Plants with F. bidentis. Master degree dissertation, Fujian Agriculture and Forestry University, Fuzhou. 12-37. (in Chinese with English abstract)[张瑞海 (2010). 黄顶菊替代植物的筛选及其与黄顶菊竞争效应的研究. 硕士学位论文, 福建农业大学, 福州. 12-37.] |
[39] | Zhang SS, Jin YL, Tang JJ, Chen X (2009). The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy. Applied Soil Ecology, 41, 215-222. |
[40] | Zhang WP, Jia X, Damagaard C, Baiy Y, Pan S, Wang GX (2013). The interplay between above- and below-ground plant-plant interactions along an environmental gradient: Insights from two-layer zone-of-influence models.Oikos, 122, 1147-1156. |
[41] | Zhou CF, Li Y, Zhang XY, Yu YC (2013). Research advance in eco-toxicity of glyphosate.Ecology and Environment Sciences, 22, 1737-1743. (in Chinese with English abstract)[周垂帆, 李莹, 张晓勇, 俞元春 (2013). 草甘膦毒性研究进展. 生态环境学报, 22, 1737-1743.] |
[42] | Zhou J, Li HL, Luo FL, Huang WJ, Zhang MX, Yu FH (2015). Effects of nitrogen addition on interspecific competition between Alternanthera philoxeroides and Alternanthera sessilis. Acta Ecologica Sinica, 35, 8258-8267. (in Chinese with English abstract)[周建, 李红丽, 罗芳丽, 黄文军, 张明祥, 于飞海 (2015). 施氮对空心莲子草(Alternanthera philoxeroides)和莲子草(Alternanthera sessilis)种间关系的影响. 生态学报, 35, 8258-8267.] |
[43] | Zhu QG, Jin AW, Wang YK, Qiu YH, Li XT, Zhang SH (2013). Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens’ under different management modes: Allometric scaling analysis. Chinese Journal of Plant Ecology, 37, 811-819. (in Chinese with English abstract)[朱强根, 金爱武, 王意锟, 邱永华, 李雪涛, 张四海 (2013). 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析. 植物生态学报, 37, 811-819.] |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[4] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[5] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[6] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[7] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[8] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[9] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[10] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[11] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[12] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[13] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[14] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[15] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19