植物生态学报 ›› 2019, Vol. 43 ›› Issue (6): 482-489.DOI: 10.17521/cjpe.2019.0064
刘璐1,2,葛结林1,舒化伟3,赵常明1,徐文婷1,申国珍1,谢宗强1,2,*()
收稿日期:
2019-03-22
修回日期:
2019-05-24
出版日期:
2019-06-20
发布日期:
2019-09-30
通讯作者:
谢宗强
基金资助:
LIU Lu1,2,GE Jie-Lin1,SHU Hua-Wei3,ZHAO Chang-Ming1,XU Wen-Ting1,SHEN Guo-Zhen1,XIE Zong-Qiang1,2,*()
Received:
2019-03-22
Revised:
2019-05-24
Online:
2019-06-20
Published:
2019-09-30
Contact:
XIE Zong-Qiang
Supported by:
摘要:
生态化学计量学是研究生态过程中化学元素平衡的科学, 碳(C)、氮(N)、磷(P)化学计量比是生态系统过程及其功能的重要特征。该研究测定了神农架常绿落叶阔叶混交林植物器官、凋落物及土壤的C、N、P含量, 利用生物量加权法计算其化学计量比, 并分析该生态系统不同组分间及不同器官间化学计量比的差异。研究结果发现: 在不同组分之间, C含量、C:N及C:P表现为植物>凋落物>土壤; N、P含量及N:P表现为凋落物>植物>土壤。在不同植物器官间, C含量的差异较小, 其变异系数相对N、P含量较低且保持稳定; N、P含量为叶片最高且变异系数最低; N:P为树皮最高, 而枝的变异系数最低。常绿与落叶树种的叶片N、P含量差异显著。与不同森林类型的化学计量比相比, 该常绿落叶阔叶混交林植物群落的C:P及N:P较低, 凋落物的C:P及N:P较高, 土壤的C、N、P化学计量比与亚热带常绿阔叶林基本一致, 生态系统的C:N相对较低。利用生物量加权法计算得到的该森林生态系统不同组分的C、N、P化学计量比的大小关系与前人利用枝叶取样算术平均的结果存在较大差异。C、N、P含量及其化学计量比在不同器官的分配及内稳性与器官的生理功能关系密切。
刘璐, 葛结林, 舒化伟, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林碳氮磷化学计量比. 植物生态学报, 2019, 43(6): 482-489. DOI: 10.17521/cjpe.2019.0064
LIU Lu, GE Jie-Lin, SHU Hua-Wei, ZHAO Chang-Ming, XU Wen-Ting, SHEN Guo-Zhen, XIE Zong-Qiang. C, N and P stoichiometric ratios in mixed evergreen and deciduous broadleaved forests in Shennongjia, China. Chinese Journal of Plant Ecology, 2019, 43(6): 482-489. DOI: 10.17521/cjpe.2019.0064
图1 采用生物量加权法获得的生态系统不同组分及乔灌木不同器官的C:N:P。
Fig. 1 The C:N:P ratios in different components and organs in trees and shrubs in forest ecosystem obtained using the biomass-?weighted mean method.
生态系统组分 Ecosystem component | C (g·kg-1) | N (g·kg-1) | P (g·kg-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|
植物群落 Plant community | 470.67 | 5.51 | 0.43 | 85.45 | 1 087.39 | 12.72 |
凋落物 Litter | 443.90 | 12.23 | 0.46 | 36.30 | 958.92 | 26.42 |
土壤 Soil | 12.94 | 1.04 | 0.21 | 12.45 | 60.58 | 4.86 |
表1 生态系统不同组分的C、N、P含量及其化学计量比
Table 1 C, N and P concentrations and their stoichiometric ratios in different components of the ecosystem
生态系统组分 Ecosystem component | C (g·kg-1) | N (g·kg-1) | P (g·kg-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|
植物群落 Plant community | 470.67 | 5.51 | 0.43 | 85.45 | 1 087.39 | 12.72 |
凋落物 Litter | 443.90 | 12.23 | 0.46 | 36.30 | 958.92 | 26.42 |
土壤 Soil | 12.94 | 1.04 | 0.21 | 12.45 | 60.58 | 4.86 |
器官 Organ | C (g·kg-1) | N (g·kg-1) | P (g·kg-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|
干 Trunk | 473.28 (0.03) | 3.19 (0.24) | 0.30 (0.63) | 148.39 (0.23) | 1 591.32 (2.11) | 10.72 (1.53) |
叶 Leaf | 474.94 (0.04) | 17.29 (0.23) | 0.97 (0.26) | 27.47 (0.27) | 487.33 (0.53) | 17.74 (0.61) |
枝 Branch | 468.74 (0.03) | 6.91 (0.25) | 0.63 (0.33) | 67.83 (0.28) | 744.63 (0.38) | 10.98 (0.23) |
树皮 Bark | 462.39 (0.05) | 5.69 (0.25) | 0.29 (0.40) | 81.30 (0.25) | 1 592.32 (0.46) | 19.59 (0.37) |
粗根 Thick root | 465.06 (0.03) | 3.52 (0.30) | 0.28 (0.57) | 132.16 (0.29) | 1 652.41 (0.44) | 12.50 (0.32) |
细根 Fine root | 467.06(0.04) | 5.87 (0.33) | 0.38 (0.43) | 79.51 (0.33) | 1 235.11 (0.38) | 15.53 (0.38) |
表2 不同器官生物量加权C、N、P含量、化学计量比及其变异系数
Table 2 C, N and P concentrations, their stoichiometric ratios, and coefficients of variation in different organs
器官 Organ | C (g·kg-1) | N (g·kg-1) | P (g·kg-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|
干 Trunk | 473.28 (0.03) | 3.19 (0.24) | 0.30 (0.63) | 148.39 (0.23) | 1 591.32 (2.11) | 10.72 (1.53) |
叶 Leaf | 474.94 (0.04) | 17.29 (0.23) | 0.97 (0.26) | 27.47 (0.27) | 487.33 (0.53) | 17.74 (0.61) |
枝 Branch | 468.74 (0.03) | 6.91 (0.25) | 0.63 (0.33) | 67.83 (0.28) | 744.63 (0.38) | 10.98 (0.23) |
树皮 Bark | 462.39 (0.05) | 5.69 (0.25) | 0.29 (0.40) | 81.30 (0.25) | 1 592.32 (0.46) | 19.59 (0.37) |
粗根 Thick root | 465.06 (0.03) | 3.52 (0.30) | 0.28 (0.57) | 132.16 (0.29) | 1 652.41 (0.44) | 12.50 (0.32) |
细根 Fine root | 467.06(0.04) | 5.87 (0.33) | 0.38 (0.43) | 79.51 (0.33) | 1 235.11 (0.38) | 15.53 (0.38) |
器官Organ | 氮含量 N concentration (g·kg-1) | 磷含量 P concentration (g·kg-1) | ||
---|---|---|---|---|
常绿树种 Evergreen tree | 落叶树种 Deciduous tree | 常绿树种 Evergreen tree | 落叶树种 Deciduous tree | |
干 Trunk | 2.67 ± 0.53a | 2.81 ± 0.70a | 0.23 ± 0.11a | 0.25 ± 0.16a |
叶 Leaf | 13.66 ± 2.68a | 17.81 ± 3.69b | 0.84 ± 0.19a | 1.06 ± 0.26b |
枝 Branch | 6.01 ± 1.45a | 5.39 ± 1.35a | 0.34 ± 0.08a | 0.34 ± 0.15a |
树皮 Bark | 6.23 ± 1.32a | 6.82 ± 1.78a | 0.61 ± 0.23a | 0.63 ± 0.20a |
粗根 Thick root | 3.34 ± 0.97a | 3.61 ± 1.09a | 0.29 ± 0.17a | 0.30 ± 0.17a |
细根 Fine root | 5.18 ± 1.94a | 6.01 ± 1.84a | 0.49 ± 0.24a | 0.38 ± 0.13b |
表3 常绿和落叶树种不同器官的N、P含量(平均值±标准偏差)
Table 3 N and P concentrations in different organs in evergreen and deciduous trees (mean ± SD)
器官Organ | 氮含量 N concentration (g·kg-1) | 磷含量 P concentration (g·kg-1) | ||
---|---|---|---|---|
常绿树种 Evergreen tree | 落叶树种 Deciduous tree | 常绿树种 Evergreen tree | 落叶树种 Deciduous tree | |
干 Trunk | 2.67 ± 0.53a | 2.81 ± 0.70a | 0.23 ± 0.11a | 0.25 ± 0.16a |
叶 Leaf | 13.66 ± 2.68a | 17.81 ± 3.69b | 0.84 ± 0.19a | 1.06 ± 0.26b |
枝 Branch | 6.01 ± 1.45a | 5.39 ± 1.35a | 0.34 ± 0.08a | 0.34 ± 0.15a |
树皮 Bark | 6.23 ± 1.32a | 6.82 ± 1.78a | 0.61 ± 0.23a | 0.63 ± 0.20a |
粗根 Thick root | 3.34 ± 0.97a | 3.61 ± 1.09a | 0.29 ± 0.17a | 0.30 ± 0.17a |
细根 Fine root | 5.18 ± 1.94a | 6.01 ± 1.84a | 0.49 ± 0.24a | 0.38 ± 0.13b |
寒温带针叶林 Cold temperate coniferous forest | 温带针阔混交林 Temperate conifer broadleaf mixed forest | 暖温带落叶阔叶林 Warm temperate deciduous broadleaved forest | 北亚热带常绿落叶阔叶混交林 North subtropical evergreen deciduous broadleaved mixed forest | 亚热带常绿阔叶林 Subtropical evergreen broadleaved forest | 热带季雨林 Tropical monsoon forest | ||
---|---|---|---|---|---|---|---|
植物群落 Plant community | C:N | 188.4 ± 2.4 | 99.1 ± 8.0 | 85.6 ± 3.7 | 85.5 | 98.4 ± 6.5 | |
C:P | 1 637.4 ± 9.3 | 954.0 ± 81.4 | 1 392.3 ± 68.9 | 1 087.4 | 1 493.4 ± 85.2 | ||
N:P | 8.7 ± 0.1 | 9.7 ± 0.2 | 16.4 ± 0.3 | 12.7 | 15.3 ± 1.5 | ||
凋落物 Litter | C:N | 30.3 ± 0.1 | 39.7 ± 0.9 | 38.8 ± 1.0 | 36.3 | 36.7 ± 0.5 | 38.0 ± 1.2 |
C:P | 623.3 ± 126.5 | 463.5 ± 28.0 | 679.6 ± 27.7 | 958.9 | 710.4 ± 56.7 | 1 212.2 ± 82.4 | |
N:P | 20.6 ± 4.2 | 11.9 ± 0.8 | 18.4 ± 0.8 | 26.4 | 19.4 ± 1.7 | 32.1 ± 2.8 | |
土壤 Soil | C:N | 14.9 ± 0.4 | 13.6 ± 0.8 | 14.4 ± 0.4 | 13.6 | 14.8 ± 0.3 | 11.0 ± 0.2 |
C:P | 45.3 ± 3.4 | 71.5 ± 6.2 | 58.3 ± 3.5 | 80.0 | 81.6 ± 6.7 | 129.1 ±10.9 | |
N:P | 3.0 ± 0.2 | 4.9 ± 0.3 | 4.2 ± 0.2 | 5.9 | 5.5 ± 0.4 | 11.7 ± 0.9 | |
生态系统 Ecosystem | C:N | 32.5 ± 4.7 | 31.8 ± 3.5 | 31.6 ± 2.2 | 25.6 | 38.0 ± 1.0 | |
C:P | 92.0 ± 9.1 | 159.5 ± 14.0 | 140.9 ± 12.6 | 168.1 | 248.8 ± 4.8 | ||
N:P | 2.9 ± 0.2 | 4.8 ± 0.4 | 4.6 ± 0.2 | 6.5 | 6.6 ± 0.1 |
表4 不同森林类型生态系统组分的C、N、P化学计量比
Table 4 C, N and P stoichiometric ratios in different components of varying forest ecosystems
寒温带针叶林 Cold temperate coniferous forest | 温带针阔混交林 Temperate conifer broadleaf mixed forest | 暖温带落叶阔叶林 Warm temperate deciduous broadleaved forest | 北亚热带常绿落叶阔叶混交林 North subtropical evergreen deciduous broadleaved mixed forest | 亚热带常绿阔叶林 Subtropical evergreen broadleaved forest | 热带季雨林 Tropical monsoon forest | ||
---|---|---|---|---|---|---|---|
植物群落 Plant community | C:N | 188.4 ± 2.4 | 99.1 ± 8.0 | 85.6 ± 3.7 | 85.5 | 98.4 ± 6.5 | |
C:P | 1 637.4 ± 9.3 | 954.0 ± 81.4 | 1 392.3 ± 68.9 | 1 087.4 | 1 493.4 ± 85.2 | ||
N:P | 8.7 ± 0.1 | 9.7 ± 0.2 | 16.4 ± 0.3 | 12.7 | 15.3 ± 1.5 | ||
凋落物 Litter | C:N | 30.3 ± 0.1 | 39.7 ± 0.9 | 38.8 ± 1.0 | 36.3 | 36.7 ± 0.5 | 38.0 ± 1.2 |
C:P | 623.3 ± 126.5 | 463.5 ± 28.0 | 679.6 ± 27.7 | 958.9 | 710.4 ± 56.7 | 1 212.2 ± 82.4 | |
N:P | 20.6 ± 4.2 | 11.9 ± 0.8 | 18.4 ± 0.8 | 26.4 | 19.4 ± 1.7 | 32.1 ± 2.8 | |
土壤 Soil | C:N | 14.9 ± 0.4 | 13.6 ± 0.8 | 14.4 ± 0.4 | 13.6 | 14.8 ± 0.3 | 11.0 ± 0.2 |
C:P | 45.3 ± 3.4 | 71.5 ± 6.2 | 58.3 ± 3.5 | 80.0 | 81.6 ± 6.7 | 129.1 ±10.9 | |
N:P | 3.0 ± 0.2 | 4.9 ± 0.3 | 4.2 ± 0.2 | 5.9 | 5.5 ± 0.4 | 11.7 ± 0.9 | |
生态系统 Ecosystem | C:N | 32.5 ± 4.7 | 31.8 ± 3.5 | 31.6 ± 2.2 | 25.6 | 38.0 ± 1.0 | |
C:P | 92.0 ± 9.1 | 159.5 ± 14.0 | 140.9 ± 12.6 | 168.1 | 248.8 ± 4.8 | ||
N:P | 2.9 ± 0.2 | 4.8 ± 0.4 | 4.6 ± 0.2 | 6.5 | 6.6 ± 0.1 |
[1] | Aerts R, Chapin III FS (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] | Aerts R, van Bodegom PM, Cornelissen JHC (2012). Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition. New Phytologist, 196, 181-188. |
[3] | Cleveland CC, Houlton BZ, Smith WK, Marklein AR, Reed SC, Parton W, Del Grosso SJ, Running SW (2013). Patterns of new versus recycled primary production in the terrestrial biosphere. Proceedings of the National Academy of Sciences of the United States of America, 110, 12733-12737. |
[4] | Ge JL, Xie ZQ (2017). Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species. Plant Ecology, 218, 1063-1076. |
[5] | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385. |
[6] | Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796. |
[7] | He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[ 贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] | |
[8] | Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366. |
[9] | Kang HZ, Xin ZJ, Berg B, Burgess PJ, Liu QL, Liu ZC, Li ZH, Liu CJ (2010). Global pattern of leaf litter nitrogen and phosphorus in woody plants. Annals of Forest Science, 67, 811. |
[10] | Lambers H, Raven JA, Shaver GR, Smith SE (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23, 95-103. |
[11] | Liu CJ, Berg B, Kutsch W, Westman CJ, Ilvesniemi H, Shen XH, Shen GR, Chen XB (2006). Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests. Global Ecology and Biogeography, 15, 438-444. |
[12] | Liu L, Zhao CM, Xu WT, Shen GZ, Xie ZQ (2018). Litter dynamics of evergreen deciduous broad-leaved mixed forests and its influential factors in Shennongjia, China. Chinese Journal of Plant Ecology, 42, 619-628. |
[ 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强 (2018). 神农架常绿落叶阔叶混交林凋落物动态及影响因素. 植物生态学报, 42, 619-628.] | |
[13] | Liu X, Duan L, Mo J, Du E, Shen J, Lu X, Zhang Y, Zhou X, He C, Zhang F (2011). Nitrogen deposition and its ecological impact in China: An overview. Environmental Pollution, 159, 2251-2264. |
[14] | Ma MZ, Shen GZ, Xiong GM, Zhao CM, Xu WT, Zhou YB, Xie ZQ (2017). Characteristic and representativeness of the vertical vegetation zonation along the altitudinal gradient in Shennongjia Natural Heritage. Chinese Journal of Plant Ecology, 41, 1127-1139. |
[ 马明哲, 申国珍, 熊高明, 赵常明, 徐文婷, 周友兵, 谢宗强 (2017). 神农架自然遗产地植被垂直带谱的特点和代表性. 植物生态学报, 41, 1127-1139.] | |
[15] | Marschener H (2011). Marschner’s Mineral Nutrition of Higher Plants. 3rd edn. Academic Press, London. |
[16] | McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401. |
[17] | Nie LQ, Wu Q, Yao B, Fu S, Hu QW (2016). Leaf litter and soil carbon, nitrogen, and phosphorus stoichiometry of dominant plant species in the Poyang Lake wetland. Acta Ecologica Sinica, 36, 1898-1906. |
[ 聂兰琴, 吴琴, 尧波, 付姗, 胡启武 (2016). 鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征. 生态学报, 36, 1898-1906.] | |
[18] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[19] | Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392. |
[20] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[21] | Sun SC, Chen LZ (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling mountain region. Acta Phytoecologica Sinica, 25, 76-82. |
[ 孙书存, 陈灵芝 (2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.] | |
[22] | Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98, 139-151. |
[23] | Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220. |
[24] | Wang XY, Hu D, He JS (2007). Biomass research of Fagus engleriana and Quercus aliena var. acuteserrata forest in Shennongjia Forest District. Journal of Capital Normal University(Natural Science Edition), 28(2), 62-67. |
[ 王向雨, 胡东, 贺金生 (2007). 神农架地区米心水青冈林和锐齿槲栎林生物量的研究. 首都师范大学学报(自然科学版), 28(2), 62-67.] | |
[25] | Xiong DC (2012). The Study of Heterogeneity in Fine Root Structure and Function of Six Subtropical Evergreen Broadleaved Forest Tree Species. Master degree dissertation, Fujian Normal University, Fuzhou. |
[ 熊德成 (2012). 亚热带6种常绿阔叶林树种细根结构和功能异质性研究. 硕士学位论文, 福建师范大学, 福州.] | |
[26] | Xu XF, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22, 737-749. |
[27] | Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H (2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi. Chinese Journal of Plant Ecology, 39, 682-693. |
[ 曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 (2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.] | |
[28] | Zhang JH, Zhao N, Liu CC, Yang H, Li ML, Yu GR, Wilcox K, Yu Q, He NP (2018). C:N:P stoichiometry in China’s forests: From organs to ecosystems. Functional Ecology, 32, 50-60. |
[29] | Zhang XQ, Wu KH, Murach D (2000). A review of methods for fine-root production and turnover of trees. Acta Ecologica Sinica, 20, 875-883. |
[ 张小全, 吴可红, Murach D (2000). 树木细根生产与周转研究方法评述. 生态学报, 20, 875-883.] | |
[30] | Zhao YH, Zhang L, Chen YF, Liu XJ, Xu W, Pan YP, Duan L (2017). Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance. Atmospheric Environment, 153, 32-40. |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[4] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 肖兰, 董标, 张琳婷, 邓传远, 李霞, 姜德刚, 林勇明. 渤海无居民海岛主要植被类型群落特征[J]. 植物生态学报, 2024, 48(1): 127-134. |
[7] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[8] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[9] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[10] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[11] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[12] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[13] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[14] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[15] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19