植物生态学报 ›› 2009, Vol. 33 ›› Issue (3): 535-545.DOI: 10.3773/j.issn.1005-264x.2009.03.012
所属专题: 生态系统碳水能量通量
孙晓新, 牟长城(), 石兰英, 程伟, 刘霞, 吴云霞, 冯登军
收稿日期:
2008-08-20
接受日期:
2009-02-02
出版日期:
2009-08-20
发布日期:
2009-05-31
通讯作者:
牟长城
作者简介:
*E-mail: mccnefu@yahoo.com基金资助:
SUN Xiao-Xin, MU Chang-Cheng(), SHI Lan-Ying, CHENG Wei, LIU Xia, WU Yun-Xia, FENG Deng-Jun
Received:
2008-08-20
Accepted:
2009-02-02
Online:
2009-08-20
Published:
2009-05-31
Contact:
MU Chang-Cheng
摘要:
利用静态箱-气相色谱法, 对小兴安岭5种森林沼泽生长季甲烷 (CH4) 排放通量进行研究, 并探讨了温度、地下水位和植被等主要环境因子对CH4排放的影响。结果表明:毛赤杨 (Alnus sibirica) 沼泽、落叶松 (Larix gmelinii) -藓类 (Moss) 沼泽和落叶松-泥炭藓 (Sphagnum spp.) 沼泽的CH4排放有明显的季节变化规律, 而白桦 (Betula platyphylla) 沼泽和落叶松-苔草 (Carex schmidtii) 沼泽CH4通量的季节变化相对较小。落叶松-泥炭藓沼泽有爆发式CH4通量现象出现, 对生长季CH4排放通量影响较大。在生长季内落叶松-泥炭藓沼泽、毛赤杨沼泽和白桦沼泽为大气CH4的源, 而落叶松-苔草沼泽和落叶松-藓类沼泽为大气CH4的汇, 生长季CH4的平均排放通量分别为 (56.08±200.38) 、 (15.34±14.89) 、 (0.64±0.88) 、 (-0.88±1.76) 和 (-0.94±3.00) mg·m-2·d-1。除落叶松-泥炭藓沼泽外, 不同森林沼泽类型间CH4排放通量随地下水位升高而增大;地下水位在-34.5~-30.8cm之间可能存在CH4源与汇的临界点, 季节平均地下水位低于这一位置的森林沼泽为大气CH4的汇。温度对森林沼泽CH4通量的影响比较复杂, 二者间可能为正或负的显著 (p<0.05) 或非显著 (p>0.05) 相关关系。CH4通量与乔木地上生物量有较强的负相关性, 这有可能成为小兴安岭森林沼泽CH4通量的最佳预测因子。
孙晓新, 牟长城, 石兰英, 程伟, 刘霞, 吴云霞, 冯登军. 小兴安岭森林沼泽甲烷排放及其影响因子. 植物生态学报, 2009, 33(3): 535-545. DOI: 10.3773/j.issn.1005-264x.2009.03.012
SUN Xiao-Xin, MU Chang-Cheng, SHI Lan-Ying, CHENG Wei, LIU Xia, WU Yun-Xia, FENG Deng-Jun. METHANE EMISSION FROM FORESTED SWAMPS IN XIAOXING’AN MOUNTAINS, NORTHEASTERN CHINA. Chinese Journal of Plant Ecology, 2009, 33(3): 535-545. DOI: 10.3773/j.issn.1005-264x.2009.03.012
图1 森林沼泽CH4通量的季节变化规律 MCY:毛赤杨沼泽Alnus sibirica swamp BH:白桦沼泽Betula platyphylla swamp LYS-TC:落叶松-苔草沼泽Larix gmelinii-Carex schmidtii swamp LYS-XL:落叶松-藓类沼泽Larix gmelinii-moss swamp LYS-NTX:落叶松-泥炭藓沼泽Larix gmelinii-Sphagnum spp.swamp排放值超出图内的纵坐标时, 直接在图上列出具体数值Values outside of the scale of the figure are given as text on the plot
Fig.1 Seasonal variations of CH4 flux in different forested swamps
[1] |
Bellisario LM, Bubier JL, Moore TR, Chanton JP (1999). Controls on CH4emissions from a northern peatland. Global Biogeochemical Cycles, 13,81-91.
DOI URL |
[2] |
Brix H, Sorrell BK, Lorenzen B (2001). Are Phrag-mites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany, 69,313-324.
DOI URL |
[3] |
Bubier JL, Moore TR (1994). An ecological perspective on methane emission from northern wetlands. Trends in Ecology and Evolution, 9,460-464.
DOI URL |
[4] | Bubier JL, Moore TR, Bellisario LM, Comer NT, Crill PM (1995). Ecological controls on methane emission from a northern peatland complex in the zone of discon-tinuous permafrost, Manitoba, Canada. Global Bio-geochemical Cycles, 9,455-470. |
[5] |
Ding WX, Cai ZC, Tsuruta H, Li XP (2002). Effect of standing water depth on methane emissions from freshwater marshes in northeast China. Atmospheric Environment, 36,5149-5157.
DOI URL |
[6] |
Ding WX, Cai ZC, Tsuruta H, Li XP (2003). Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere, 51,167-173.
DOI URL |
[7] |
Ding WX, Cai ZC, Wang DX (2004). Preliminary budget of methane emissions from natural wetlands in China. Atmospheric Environment, 38,751-759.
DOI URL |
[8] |
Duan XN, Wang XK, Mu YJ, Ouyang ZY (2005). Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmospheric Environment, 39,4479-4487.
DOI URL |
[9] |
Harriss RC, Sebacher DI, Day FP (1982). Methane flux in the great Dismal swamp. Nature, 297,673-674.
DOI URL |
[10] | Hirota M, Tang YH, Hu QW, Hirata S, Kato T, Mo WH, Cao GM, Mariko S (2004). Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology&Biochemistry, 36,737-748. |
[11] | Huang GH (黄国宏), Xiao DN (肖笃宁), Li YX (李玉祥), Chen GX (陈冠雄), Yang YC (杨玉成), Zhao CW (赵长伟) (2001). CH4emission from the reed wetland. Acta Ecologica Sinica (生态学报), 21,1494-1497. (in Chinese with English abstract) |
[12] | Intergovernmental Panel on Climate Change IPCC (2007). Contribution of Working Group I to the fourth assess-ment report of the intergovernmental panel on climate change.In:Solomo SD, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climate Change in2007:The Physical Science Basis. Cambridge University Press. Cambridge, UK. |
[13] |
Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen P, Vasander H (2005). Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology, 11,1788-1797.
DOI URL |
[14] | Jin HJ (金会军), Wu J (吴杰), Cheng GD (程国栋), Nakano T (中野智子), Sun GY (孙广友) (1999). Methane emissions from wetlands on the Qinghai-Tibetan Pla-teau. Chinese Science Bulletin (科学通报), 44,1758-1762. (in Chinese) |
[15] |
Kang H, Freeman C (2002). The influence of hydrochemis-try on methane emissions from two contrasting north-ern wetlands. Water, Air, and Soil Pollution, 141,263-272.
DOI URL |
[16] | Lang HQ (郎惠卿) (1999). Wetland Vegetation in China (中国湿地植被). Science Press, Beijing, 35-74. (inChinese). |
[17] | Lelieveld J, Crutzen P, Dentener FJ (1998). Changing con-centration, lifetime and climate forcing of atmosphericmethane. Tellus, 50B,128-150. |
[18] | Liu XT (刘兴土), Lü XG (吕宪国), Zhao KY (赵魁义) (2007). Wetlands resource and restoration.In:Li WH (李文华) ed. Important Consultation Item of ChineseAcademy of Engineering:Several Stratagem Issues About Water and Soil Resource Configure, Environ-ment Protection, and Sustainable Development in Northeast, China-Volume of Forest:Forest and Wet-lands Restoration and Stratagem of Forest Develop-ment in Northeast, China (东北地区有关水土资源配制、生态与环境保护和可持续发展的若干战略问题研究-林业卷:东北地区森林与湿地保育及林业发展战略研究), Science Press, Beijing,409-449. (in Chi-nese). |
[19] | Lu CY (卢昌义), Ye Y (叶勇), Huang YS (黄玉山), Tan FY (谭凤仪) (2000). Methane fluxes from mangrove communities at Dongzhai harbour, Hainan. Acta Phy-toecologica Sinica (植物生态学报), 24,87-90. (in Chinese with English abstract) |
[20] | Mathews E, Fung I (1987). Methane emission from naturawetlands:global distribution, area and environmenta characteristics of sources. Global Biogeochemical Cy-cles, 1,61-86. |
[21] | Mattson MD, Likens GE (1990). Air pressure and methanefluxes. Nature, 347,718-719. |
[22] | Megonigal JP, Schlesinger WH (2002). Methane-limitedmethanotrophy in tidal freshwater swamps. GlobalBiogeochemical Cycles, 16,1088-1098. |
[23] | Melling L, Hatano R, Kah JG (2005). Methane fluxes from three ecosystems in tropical peatland of Sarawak, Ma-laysia. Soil Biology&Biochemistry, 37,1445-1453. |
[24] | Moore TR, Knowles R (1990). Methane emission from fen, bog and swamp peatlands in Quebec. Biogeochemistry, 11,45-61. |
[25] |
Moore TR, Roulet NT (1993). Methane flux:water table relations in northern wetlands. Geophysical Research Letters, 20,587-590.
DOI URL |
[26] |
Morrissey LA, Livingston GP (1992). Methane emissions from Alaska Arctic Tundra:an assessment of local spatial variability. Journal of Geophysical Research, 97,16661-16670.
DOI URL |
[27] |
Pulliam WM (1993). Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecological Monographs, 63,29-53.
DOI URL |
[28] | Rask H, Schoenau J, Anderson D (2002). Factors influenc-ing methane flux from a boreal forest wetland in Sas-katchewan, Canada. Soil Biology&Biochemistry, 34,435-443. |
[29] |
Saarnio S, Alm J, Silvola J, Lohila A, Nykänen H, Marti-kainen PJ (1997). Seasonal variation in CH4emissions and production and oxidation potentials at microsite on an oligotrophic pine fen. Oecologia, 110,414-422.
DOI PMID |
[30] | Scott KJ, Kelly CA, Rudd JWM (1999). The importance of floating peat to methane fluxes from flooded peatlands. Biogeochemistry, 47,187-202. |
[31] |
Segers R (1998). Methane production and methane con-sumption―a review of processes underlying wetland methane fluxes. Biogeochemistry, 41,23-51.
DOI URL |
[32] |
Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Massin-Delmotte V, Jouzel J (2005). Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science, 310,1317-1321.
DOI URL |
[33] | Song CC (宋长春), Wang YY (王毅勇), Wang YS (王跃思), Zhao ZC (赵志春) (2006). Character of the greenhouse gas emission in the freshwater mire under human activities. Scientia Geographica Sinica (地理科学), 26,82-86. (in Chinese with English abstract) |
[34] | Song CC (宋长春), Yan BX (阎百兴), Wang YS (王跃思), Wang YY (王毅勇), Lou YJ (娄彦景), Zhao ZC (赵志春) (2003). Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chinese Science Bulletin (科学通报), 48,2473-2477. (in Chinese) |
[35] | Sugimoto A, Fujita N (1997). Characteristics of methane emission from different vegetations on a wetland. Tel-lus, 49B,382-392. |
[36] | Van der Pol-van Dasselaar A, van Beusichem ML Oenema O (1999). Determinants of spatial variability of meth-ane emissions from wet grasslands on peat soil. Bio-geochemistry, 44,221-237. |
[37] | Vann CD, Megoniga JP (2003). Elevated CO2and water depth regulation of methane emissions:comparison of woody and non-woody wetland plant species. Biogeo-chemistry, 63,117-134. |
[38] |
Wang YS, Wang YH (2003). Quick measurement of CO2, CH4and N2O emissions from a short-plant ecosystem. Advances in Atmospheric Sciences, 20,842-844.
DOI URL |
[39] | Wang YS (王跃思) (2004). Chamber methods for measur-ing carbon exchange.In:Chen PQ (陈泮勤) ed. Carbon Circling in Earth System (地球系统碳循环). Sci-ence Press, Beijing, 130-145. (in Chinese) |
[40] |
Wang ZP, Han XG, Li LH (2006). Methane emission patches in riparian marshes of the Inner Mongolia. Atmospheric Environment, 40,5528-5532.
DOI URL |
[41] |
Whiting GJ, Chanton JP (1993). Primary production control of methane emission from wetlands. Nature, 364,794-795.
DOI URL |
[42] |
Wilson JO, Crill PM, Bartlett KB, Sebacher DI, Harriss RC, Sass RL (1989). Seasonal variation of methane emis-sion from temperate swamp. Biogeochemistry, 8,55-71.
DOI URL |
[43] |
Windsor J, Moore TR, Roulet NT (1992). Episodic fluxes of methane from subarctic fens. Canadian Journal of Soil Science, 72,441-452.
DOI URL |
[44] |
Yang JS (杨继松), Li JS (刘景双), Wang JD (王金达), Yu JB (于君宝), Sun ZG (孙志高), Li XH (李新华) (2006). Emissions of CH4and N2O from wetland in the Sanjiang Plain. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30,432-440. (in Chinese with English abstract)
DOI |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[5] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[6] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[7] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[8] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[9] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[10] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[11] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[12] | 徐干君, 吴胜义, 李伟, 赵欣胜, 聂磊超, 唐希颖, 翟夏杰. 陕西黄河湿地自然保护区碳储量估算[J]. 植物生态学报, 2023, 47(4): 469-478. |
[13] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[14] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[15] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19