植物生态学报 ›› 2014, Vol. 38 ›› Issue (12): 1325-1332.DOI: 10.3724/SP.J.1258.2014.00127
所属专题: 青藏高原植物生态学:生态系统生态学
张林1,*(), 阎恩荣2, 魏海霞1, 刘新圣3, 沈维1
收稿日期:
2014-05-12
接受日期:
2014-12-01
出版日期:
2014-05-12
发布日期:
2015-04-16
通讯作者:
张林
作者简介:
* E-mail: zhanglin@itpcas.ac.cn基金资助:
ZHANG Lin1,*(), YAN En-Rong2, WEI Hai-Xia1, LIU Xin-Sheng3, SHEN Wei1
Received:
2014-05-12
Accepted:
2014-12-01
Online:
2014-05-12
Published:
2015-04-16
Contact:
ZHANG Lin
摘要:
在湿润的青藏高原东南部, 为什么常绿灌木广泛占据高海拔的林线过渡带及以上的高山带, 而落叶灌木只能零星分布?未来气候变暖对该区不同功能群物种的影响是否相同?通过测定西藏东南部色季拉山林线过渡带7种灌木凋落叶的氮含量, 比较了极端高海拔地区灌木不同表达单位的叶氮回收潜力在不同功能群间的差异, 以及不同海拔、不同坡向间的差异, 试图从养分限制的角度为解答上述科学问题提供基础数据。研究结果表明: 1)从基于单位质量叶氮含量(Nmass)的叶氮回收潜力来看, 常绿灌木裂毛雪山杜鹃(薄毛海绵杜鹃) (Rhododendron aganniphum var. schizopeplum)显著高于其他6种落叶灌木, 但由于受比叶重的影响, 基于单位面积叶氮含量(Narea)的叶氮回收潜力则表现为落叶灌木总体较高; 2)落叶灌木山生柳(Salix oritrepha)和拉萨小檗(Berberis hemsleyana)的叶氮回收潜力在不同海拔或不同坡向间均无显著差异, 但裂毛雪山杜鹃基于Nmass的叶氮回收潜力在高海拔地段明显偏高。在极端高海拔的林线过渡带, 通过降低凋落叶中的氮含量(增加叶氮回收潜力)以达到高效的养分利用可能是常绿灌木裂毛雪山杜鹃适应高寒胁迫环境的重要策略。与落叶灌木相比, 常绿灌木裂毛雪山杜鹃叶氮回收潜力对未来气候变暖可能更敏感。
张林, 阎恩荣, 魏海霞, 刘新圣, 沈维. 藏东南色季拉山林线过渡带7种灌木植物的叶氮回收潜力. 植物生态学报, 2014, 38(12): 1325-1332. DOI: 10.3724/SP.J.1258.2014.00127
ZHANG Lin, YAN En-Rong, WEI Hai-Xia, LIU Xin-Sheng, SHEN Wei. Leaf nitrogen resorption proficiency of seven shrubs across timberline ecotones in the Sergymla Mountains, Southeast Xizang, China. Chinese Journal of Plant Ecology, 2014, 38(12): 1325-1332. DOI: 10.3724/SP.J.1258.2014.00127
物种 Species | 常绿或落叶 Evergreen or deciduous | 坡向 Aspect | 生境 Habitat | 海拔 Altitude (m) |
---|---|---|---|---|
山生柳 Salix oritrepha | 落叶 Deciduous | 北坡、南坡及山谷均有分布 North-facing slope, south-facing slope and in valleys | 林缘 Forest edge | 4 150-4 450 |
西南花楸 Sorbus rehderiana | 落叶 Deciduous | 北坡及山谷 North-facing slope and in valleys | 林缘、林窗 Forest edge, forest gap | 4 200-4 400 |
拉萨小檗 Berberis hemsleyana | 落叶 Deciduous | 南坡及山谷 South-facing slope and in valleys | 林缘 Forest edge | 4 150-4 450 |
腺果大叶蔷薇 Rosa macrophylla var. glandulifera | 落叶 Deciduous | 南坡及山谷 South-facing slope and in valleys | 林缘 Forest edge | 4 150-4 400 |
冰川茶藨子 Ribes glaciale | 落叶 Deciduous | 主要分布在北坡 Mainly on north-facing slope | 林缘、林窗 Forest edge, forest gap | 4 200-4 350 |
高山绣线菊 Spiraea alpina | 落叶 Deciduous | 北坡 North-facing slope | 林缘 Forest edge | 4 300-4 400 |
裂毛雪山杜鹃 Rhododendron aganniphum var. schizopeplum | 常绿 Evergreen | 南北坡 North-facing slope, south-facing slope | 广泛分布 Widely distributed | 4 200-4 700 |
表1 色季拉山林线过渡带7种灌木的分布特征
Table 1 Distributional characteristics of seven shrubs across timberline ecotones in the Sergymla Mountains
物种 Species | 常绿或落叶 Evergreen or deciduous | 坡向 Aspect | 生境 Habitat | 海拔 Altitude (m) |
---|---|---|---|---|
山生柳 Salix oritrepha | 落叶 Deciduous | 北坡、南坡及山谷均有分布 North-facing slope, south-facing slope and in valleys | 林缘 Forest edge | 4 150-4 450 |
西南花楸 Sorbus rehderiana | 落叶 Deciduous | 北坡及山谷 North-facing slope and in valleys | 林缘、林窗 Forest edge, forest gap | 4 200-4 400 |
拉萨小檗 Berberis hemsleyana | 落叶 Deciduous | 南坡及山谷 South-facing slope and in valleys | 林缘 Forest edge | 4 150-4 450 |
腺果大叶蔷薇 Rosa macrophylla var. glandulifera | 落叶 Deciduous | 南坡及山谷 South-facing slope and in valleys | 林缘 Forest edge | 4 150-4 400 |
冰川茶藨子 Ribes glaciale | 落叶 Deciduous | 主要分布在北坡 Mainly on north-facing slope | 林缘、林窗 Forest edge, forest gap | 4 200-4 350 |
高山绣线菊 Spiraea alpina | 落叶 Deciduous | 北坡 North-facing slope | 林缘 Forest edge | 4 300-4 400 |
裂毛雪山杜鹃 Rhododendron aganniphum var. schizopeplum | 常绿 Evergreen | 南北坡 North-facing slope, south-facing slope | 广泛分布 Widely distributed | 4 200-4 700 |
图1 0-20 cm土层氨态氮(NH4-N)和硝态氮(NO3-N)浓度随海拔的变化(平均值±标准误差)。 不同小写字母表示不同海拔间差异显著(p < 0.05)。
Fig. 1 Altitudinal variations of NH4-N and NO3-N concentrations in the 0-20 cm soil layer (mean ± SE). Different lowercase letters indicate significant differences among different altitudes (p < 0.05).
图2 林线过渡带7种灌木凋落叶单位质量叶氮含量(Nmass) (A)、单位面积叶氮含量(Narea) (B)和比叶重(LMA) (C)的比较(平均值±标准误差)。 不同小写字母表示不同物种间差异显著(p < 0.05)。
Fig. 2 Comparisons of leaf mass-based nitrogen concentrations (Nmass) (A), leaf area-based nitrogen concentrations (Narea) (B), and leaf mass per area (LMA) (C) in senesced leaves among seven shrubs across timberline ecotones (mean ± SE). Different lowercase letters indicate significant differences among different species (p < 0.05).
图3 不同坡向和海拔山生柳单位质量叶氮含量(Nmass) (A)和单位面积叶氮含量(Narea) (B)的比较(平均值±标准误差)。 相同小写字母表示不同坡向和不同海拔间差异不显著(p > 0.05)。
Fig. 3 Comparisons of leaf mass-based nitrogen concentrations (Nmass) (A) and leaf area-based nitrogen concentrations (Narea) (B) in Salix oritrepha between different aspects and altitudes (mean ± SE). The same lowercase letters indicate no significant differences among different aspects and altitudes (p > 0.05).
图4 不同海拔阳坡拉萨小檗单位质量叶氮含量(Nmass) (A)和单位面积叶氮含量(Narea) (B)的比较(平均值±标准误差)。 相同小写字母表示不同海拔间差异不显著(p > 0.05)。
Fig. 4 Comparisons of leaf mass-based nitrogen concentrations (Nmass) (A) and leaf area-based nitrogen concentrations (Narea) (B) in Berberis hemsleyana between different altitudes in south-facing slope (mean ± SE). The same lowercase letters indicate no significant differences between two altitudes (p > 0.05).
图5 不同海拔阴坡裂毛雪山杜鹃单位质量叶氮含量(Nmass) (A)和单位面积叶氮含量(Narea) (B)的比较(平均值±标准误差)。 不同小写字母表示不同海拔间差异显著(p < 0.05)。
Fig. 5 Comparisons of leaf mass-based nitrogen concentrations (Nmass) (A) and leaf area-based nitrogen concentrations (Narea) (B) in Rhododendron aganniphum var. schizopeplum between different altitudes in north-facing slope (mean ± SE). Different lowercase letters indicate significant differences between two altitudes (p < 0.05).
1 | Aerts R ( 1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608. |
2 | Aerts R, Chapin III FS ( 2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
3 | Aerts R, van der Peijl MJ ( 1993). A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos, 66, 144-147. |
4 | Berendse F ( 1994). Litter decomposability―a neglected com- ponent of plant fitness. Journal of Ecology, 82, 187-190. |
5 | Berendse F, Aerts R ( 1987). Nitrogen-use-efficiency: a biological meaningful definition? Functional Ecology, 1, 293-296. |
6 | Chabot BF, Hicks DJ ( 1982). The ecology of leaf life spans. Annual Review of Ecology and Systematics, 13, 229-259. |
7 |
Drenovsky RE, Koehler CE, Skelly K, Richards JH ( 2013). Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia, 171, 39-50.
URL PMID |
8 | Eckstein RL, Karlsson PS, Weih M ( 1999). Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytologist, 143, 177-189. |
9 |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE ( 2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL PMID |
10 |
Escudero A, Arco JM, Sanz IC, Ayala J ( 1992). Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia, 90, 80-87.
DOI URL PMID |
11 |
Fisher JB, Malhi Y, Cuba Torres I, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH ( 2013). Nutrient limitation in rainforests and cloud forests along a 3000-m elevation gradient in the Peruvian Andes. Oecologia, 172, 889-902.
DOI URL PMID |
12 | Givnish TJ ( 2002). Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica, 36, 703-743. |
13 | Güsewell S ( 2005). Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology, 19, 344-354. |
14 | Kilic D, Kutbay HG, Ozbucak T, Huseyinova R ( 2010). Foliar resorption in Quercus petraea subsp. Iberic aand Arbutus andrachne along an elevational gradient. Annals of Forest Science, 67, 213-221. |
15 | Killingbeck KT ( 1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727. |
16 | Knops JMH, Koenig WD ( 1997). Site fertility and leaf nutrients of sympatric evergreen and deciduous species of Quercus in central coastal California. Plant Ecology, 130, 121-131. |
17 | Kong GQ, Luo TX, Liu XS, Zhang L, Liang EY ( 2012). Annual ring widths are good predictors of changes in net primary productivity of alpine Rhododendron shrubs in the Sergyemla Mountains, southeast Tibet. Plant Ecology, 213, 1843-1855. |
18 |
Körner C ( 1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
DOI URL PMID |
19 | Kutbay HG, Ok T ( 2003). Foliar N and P resorption and nutrient levels along an elevational gradient in Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball. Annuals of Forest Science, 60, 449-454. |
20 | Li MC (2007). Leaf δ 13C and Related Physio-ecological Characteristics Across Different Plant Life Forms at Alpine Timberline, Southeastern Tibetan Plateau. PhD dissertation, Institute of Tibetan Plateau Research of Chinese Academy of Sciences,Beijing. |
(in Chinese) [ 李明财 (2007). 藏东南高山林线不同生活型植物δ 13C值及相关生理生态学特性研究 . 博士学位论文. 中国科学院青藏高原研究所, 北京.] | |
21 | Li MC, Liu DY, Kong GQ ( 2009). Nutrient resorption and use efficiency at different canopy heights of alpine tree species Abies georger var. smithii (Viguie et Gaussen) Cheng, Tibetan Plateau. Polish Journal of Ecology, 57, 63-72. |
22 | Liang EY, Wang YF, Xu Y, Liu B, Shao XM ( 2010). Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees-Structure and Function, 24, 363-373. |
23 | Liu X, Luo T ( 2011). Spatiotemporal variability of soil temperature and moisture across two contrasting timberline ecotones in the Sergyemla mountains, Southeast Tibet. Arctic Antarctic and Alpine Research, 43, 229-238. |
24 |
Luo TX, Luo J, Pan Y ( 2005). Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, eastern Tibetan Plateau. Oecologia, 142, 261-273.
DOI URL PMID |
25 | Luo TX, Zhang L (2010). Abnormal Distribution Pattern of Forest Vegetation. In: Editorial Board of Earth Science of 10000 Selected Problems in Sciences ed. 10000 Selected Problems in Sciences (Earth Science). Science Press, Beijing. 41-43.(in Chinese) |
[ 罗天祥, 张林 (2010). 森林植被分布的异常格局. 见: “10000个科学难题”地球科学编委会编. 10000个科学难题(地球科学卷). 科学出版社, 北京. 41-43.] | |
26 | Miehe G, Miehe S, Vogel J, Co S, La D ( 2007). Highest treeline in the Northern Hemisphere found in Southern Tibet. Mountain Research and Development, 27, 169-178. |
27 | Ryan DF, Bormann FH ( 1982). Nutrient resorption in northern hardwood forests. Bioscience, 32, 29-32. |
28 | Soethe N, Lehmann J, Engels C ( 2008). Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology, 24, 397-406. |
29 | Sun SC, Chen LZ (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica, 25, 76-82.(in Chinese with English abstract) |
[ 孙书存, 陈灵芝 (2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.] | |
30 | Yuan ZY, Chen HYH ( 2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography, 18, 532-542. |
31 | Zhang L, Jin DM (2010). Principle methods of measuring leaf area of cornifer trees. In: Advances in Biodiversity Conservation and Research in China―Proceeding the Eighth National Symposium on the Conservation and Sustainable Use of Biodiversity in China. China Meteorological Press, Beijing. 46-50.(in Chinese) |
[ 张林, 金冬梅 (2010). 针叶树种叶面积的主要测定方法. 见: 中国生物多样性保护与研究进展——第八届全国生物多样性保护与持续利用研讨会论文集. 气象出版社, 北京. 46-50.] | |
32 | Zhang L, Luo TX, Zhu HZ, Daly C, Deng KM ( 2010). Leaf lifespan as a simple indicator of the evergreen forest zonations in China. Journal of Biogeography, 37, 27-36. |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[5] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[8] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[9] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[10] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[11] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[12] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[13] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[14] | 陈奕竹, 郎伟光, 陈效逑. 中国北方树木秋季物候的过程模拟及其区域分异归因[J]. 植物生态学报, 2022, 46(7): 753-765. |
[15] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19