植物生态学报 ›› 2011, Vol. 35 ›› Issue (8): 844-852.DOI: 10.3724/SP.J.1258.2011.00844
所属专题: 生态化学计量
收稿日期:
2011-04-11
接受日期:
2011-06-08
出版日期:
2011-04-11
发布日期:
2011-07-28
通讯作者:
朱艳
作者简介:
*E-mail: yanzhu@njau.edu.cn
YAO Xia, TANG Shou-Peng, CAO Wei-Xing, TIAN Yong-Chao, ZHU Yan*()
Received:
2011-04-11
Accepted:
2011-06-08
Online:
2011-04-11
Published:
2011-07-28
Contact:
ZHU Yan
摘要:
研究利用近红外光谱(near-infrared, NIR)和化学计量学方法估测小麦(Triticum aestivum)新鲜叶片和粉末状干叶中全氮含量的可行性, 并建立小麦叶片氮含量估测模型, 以期为小麦氮素营养的精确管理提供理论依据。以3个小麦田间试验观测资料为基础, 分别运用偏最小二乘法(partial least squares, PLS)、反向传播神经网络(back-propagation neural network, BPNN)和小波神经网络(wavelet neural network, WNN), 建立小麦叶片氮含量的鲜叶和粉末状干叶近红外光谱估测模型, 用随机选择的样品集对所建模型进行测试和检验。结果显示, 利用PLS、BPNN和WNN 3种方法构建的近红外光谱模型均能准确地估测小麦叶片氮含量, 其中基于BPNN和WNN的模型优于基于PLS的模型, 且以基于WNN的模型表现最好。对模型进行检验的结果显示, 粉末状干叶模型的预测均方根误差(RMSEP)分别为0.147、0.101和0.094, 鲜叶模型的RMSEP分别为0.216、0.175和0.169, 模型的相关系数均在0.84以上。因此, 利用近红外光谱估算小麦叶片氮素营养精确可行, 对其他作物的氮素营养估测提供了借鉴和参考。
姚霞, 汤守鹏, 曹卫星, 田永超, 朱艳. 应用近红外光谱估测小麦叶片氮含量. 植物生态学报, 2011, 35(8): 844-852. DOI: 10.3724/SP.J.1258.2011.00844
YAO Xia, TANG Shou-Peng, CAO Wei-Xing, TIAN Yong-Chao, ZHU Yan. Estimating the nitrogen content in wheat leaves by near-infrared reflectance spectroscopy. Chinese Journal of Plant Ecology, 2011, 35(8): 844-852. DOI: 10.3724/SP.J.1258.2011.00844
统计参数 Statistical parameter | 样品数 Number of samples | 最小值 Minimum value (%) | 最大值 Maximum value (%) | 平均值 Mean value (%) | 标准偏差 Standard deviation (%) | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|---|
校正集 Calibration set | 136 | 0.57 | 4.42 | 2.50 | 1.01 | 40.40 |
检验集 Testing set | 39 | 0.60 | 4.26 | 2.42 | 0.95 | 39.26 |
表1 校正集和检验集小麦叶片全氮含量统计参数
Table 1 The statistical parameters of calibration set and testing set for total nitrogen content in leaf of wheat
统计参数 Statistical parameter | 样品数 Number of samples | 最小值 Minimum value (%) | 最大值 Maximum value (%) | 平均值 Mean value (%) | 标准偏差 Standard deviation (%) | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|---|
校正集 Calibration set | 136 | 0.57 | 4.42 | 2.50 | 1.01 | 40.40 |
检验集 Testing set | 39 | 0.60 | 4.26 | 2.42 | 0.95 | 39.26 |
回归类型 Regression type | 样品 Sample | 预处理方式 Preprocessing method | 校正均方根误差 RMSEC(%) | R2 |
---|---|---|---|---|
偏最小二乘法 PLS | 鲜叶 Fresh leaf | MSC+SG | 0.252 | 0.805 |
MSC+SG+1D | 0.243 | 0.824 | ||
MSC+SG+2D | 0.231 | 0.832 | ||
MSC+N+1D | 0.276 | 0.786 | ||
MSC+N+2D | 0.269 | 0.791 | ||
粉末状干叶 Dry leaf powder | MSC+SG | 0.247 | 0.829 | |
MSC+SG+1D | 0.275 | 0.811 | ||
MSC+SG+2D | 0.264 | 0.821 | ||
MSC+N+1D | 0.153 | 0.904 | ||
MSC+N+2D | 0.161 | 0.900 | ||
反向传播神经网络 BPNN | 鲜叶 Fresh leaf | MSC+SG | 0.195 | 0.852 |
MSC+SG+1D | 0.186 | 0.873 | ||
MSC+SG+2D | 0.174 | 0.881 | ||
MSC+N+1D | 0.206 | 0.844 | ||
MSC+N+2D | 0.198 | 0.856 | ||
粉末状干叶 Dry leaf powder | MSC+SG | 0.111 | 0.956 | |
MSC+SG+1D | 0.121 | 0.950 | ||
MSC+SG+2D | 0.118 | 0.951 | ||
MSC+N+1D | 0.108 | 0.962 | ||
MSC+N+2D | 0.129 | 0.946 | ||
小波神经网络 WNN | 鲜叶 Fresh leaf | MSC+SG | 0.199 | 0.872 |
MSC+SG+1D | 0.185 | 0.884 | ||
MSC+SG+2D | 0.173 | 0.899 | ||
MSC+N+1D | 0.201 | 0.847 | ||
MSC+N+2D | 0.196 | 0.875 | ||
粉末状干叶 Dry leaf powder | MSC+SG | 0.105 | 0.958 | |
MSC+SG+1D | 0.113 | 0.954 | ||
MSC+SG+2D | 0.102 | 0.967 | ||
MSC+N+1D | 0.091 | 0.983 | ||
MSC+N+2D | 0.118 | 0.961 |
表2 不同光谱预处理方法下定标方程的表现
Table 2 Performance of the calibration equations under different methods of spectra preprocessing
回归类型 Regression type | 样品 Sample | 预处理方式 Preprocessing method | 校正均方根误差 RMSEC(%) | R2 |
---|---|---|---|---|
偏最小二乘法 PLS | 鲜叶 Fresh leaf | MSC+SG | 0.252 | 0.805 |
MSC+SG+1D | 0.243 | 0.824 | ||
MSC+SG+2D | 0.231 | 0.832 | ||
MSC+N+1D | 0.276 | 0.786 | ||
MSC+N+2D | 0.269 | 0.791 | ||
粉末状干叶 Dry leaf powder | MSC+SG | 0.247 | 0.829 | |
MSC+SG+1D | 0.275 | 0.811 | ||
MSC+SG+2D | 0.264 | 0.821 | ||
MSC+N+1D | 0.153 | 0.904 | ||
MSC+N+2D | 0.161 | 0.900 | ||
反向传播神经网络 BPNN | 鲜叶 Fresh leaf | MSC+SG | 0.195 | 0.852 |
MSC+SG+1D | 0.186 | 0.873 | ||
MSC+SG+2D | 0.174 | 0.881 | ||
MSC+N+1D | 0.206 | 0.844 | ||
MSC+N+2D | 0.198 | 0.856 | ||
粉末状干叶 Dry leaf powder | MSC+SG | 0.111 | 0.956 | |
MSC+SG+1D | 0.121 | 0.950 | ||
MSC+SG+2D | 0.118 | 0.951 | ||
MSC+N+1D | 0.108 | 0.962 | ||
MSC+N+2D | 0.129 | 0.946 | ||
小波神经网络 WNN | 鲜叶 Fresh leaf | MSC+SG | 0.199 | 0.872 |
MSC+SG+1D | 0.185 | 0.884 | ||
MSC+SG+2D | 0.173 | 0.899 | ||
MSC+N+1D | 0.201 | 0.847 | ||
MSC+N+2D | 0.196 | 0.875 | ||
粉末状干叶 Dry leaf powder | MSC+SG | 0.105 | 0.958 | |
MSC+SG+1D | 0.113 | 0.954 | ||
MSC+SG+2D | 0.102 | 0.967 | ||
MSC+N+1D | 0.091 | 0.983 | ||
MSC+N+2D | 0.118 | 0.961 |
图2 内部交叉验证均方差(RMSECV)随偏最小二乘法主成分数(PC)的变化。
Fig. 2 Changes of root mean square error of cross validation (RMSECV) with the number of partial least squares principal components (PC). Dry, dry leaf powder; Fresh, fresh leaf.
图3 内部交叉验证均方差(RMSECV)随隐层节点数的变化。BPNN, 反向传播神经网络; Dry, 粉未状干叶; Fresh, 鲜叶; WNN, 小波神经网络。
Fig. 3 Changes of root mean square error of cross validation (RMSECV) with the number of neurons in hidden layer. BPNN, back propagation neural network; Dry, dry leaf powder; Fresh, fresh leaf; WNN, wavelet neural network.
图4 小麦叶片全氮含量预测值与观测值的相关性。BPNN, 反向传播神经网络; Dry, 粉末干叶状; Fresh, 鲜叶; PLS, 偏最小二乘法; RMSEP, 预测均方根误差; WNN, 小波神经网络。
Fig. 4 Correlation between predicted and observed values of total nitrogen content in wheat leaf. BPNN, back-propagation neural network; Dry, dry leaf powder; Fresh, fresh leaf; PLS, partial least squares; RMSEP, root mean square errors of prediction; WNN, wavelet neural network.
[1] | Blakeney AB, Batten GD, Welsh LA (1996). Leaf nitrogen determination using a portable near-infrared spectrometer. In: Davies AMC, Williams P eds. Near Infrared Spectroscopy: the Future Waves. The Proceedings of the 7th International Conference on Near Infrared Spectroscopy. NIR Publications, Chichester,149-152. |
[2] | Christy CD (2008). Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and Electronics in Agriculture, 61,10-19. |
[3] | Cozzolino D, Fassio A, Fernández E, Restaino E,La Manna A (2006). Measurement of chemical composition in wet whole maize silage by visible and near infrared reflectance spectroscopy. Animal Feed Science and Technology, 129,329-336. |
[4] | Cozzolino D, Morón A (2006). Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions. Soil and Tillage Research, 85,78-85. |
[5] | Curran PJ, Dungan JL, Peterson DL (2001). Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 76,349-359. |
[6] |
Dou Y, Mi H, Zhao LZ, Ren YQ, Ren YL (2006). Determination of compound aminopyrine phenacetin tablets by using artificial neural networks combined with principal components analysis. Analytical Biochemistry, 351,174-180.
URL PMID |
[7] | Feng W (冯伟), Yao X (姚霞), Zhu Y (朱艳), Tian YC (田永超), Cao WX (曹卫星) (2008). Monitoring leaf nitrogen concentration by hyperspectral remote sensing in wheat. Journal of Triticeae Crops (麦类作物学报), 25,851-860. (in Chinese with English abstract) |
[8] | Fernandez JE, Badiali M, Guidetti A, Scot V (2007). Multiple scattering corrections for density profile unfolding from Compton scattering signals in reflection geometry. Nuclear Instruments and Methods in Physics Research Section A (Accelerators, Spectrometers, Detectors and Associated Equipment), 580,77-80. |
[9] | Gislum R, Micklander E, Nielsen JP (2004). Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Research, 88,269-277. |
[10] | Halgerson JL, Sheaffer CC, Martin NP, Peterson PR, Weston SJ (2004). Near-infrared reflectance spectroscopy prediction of leaf and mineral concentrations in alfalfa. Agronomy Journal, 96,344-351. |
[11] | Kokaly RF, Clark RN (1999). Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 67,267-287. |
[12] | Li DY (李冬云), Li CY (李彩云) (2007). Optimization method of near infrared spectroscopy signal. Computers and Applied Chemistry (计算机与应用化学), 24,1418-1420. (in Chinese with English abstract) |
[13] | Liu L (刘莉), Huang L (黄岚), Yan YL (严衍禄), Wang ZY (王忠义) (2008). Progress in the study of impact of scattering on stability of quantitative analysis model using near infrared spectroscopy technology and correction methods. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 28,2290-2295. (in Chinese with English abstract) |
[14] | Luo JW, Ying K, Bai J (2005). Savitzky-Golay smoothing and differentiation filter for even number data. Signal Processing, 85,1429-1434. |
[15] | Morón A, García A, Sawchik J, Cozzolino D (2007). Preliminary study on the use of near-infrared reflectance spectroscopy to assess nitrogen content of undried wheat plants. Journal of the Science of Food and Agriculture, 87,147-152. |
[16] |
Moros J, Llorca I, Cervera ML, Pastor A, Garrigues S,de la Guardia M (2008). Chemometric determination of arsenic and lead in untreated powdered red paprika by diffuse reflectance near-infrared spectroscopy. Analytica Chimica Acta, 613,196-206.
URL PMID |
[17] | Mroczyk WB, Michalski KM (1995). Quantitative and qualitative analyses in near infrared analysis of basic compounds in sugar beet leaf. Computers & Chemistry, 19,299-301. |
[18] | Norris KH, Williams PC (1984). Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. I. Influence of particle size. Cereal Chemistry, 61,158-165. |
[19] | Riley MR, Cánaves LC (2002). FT-NIR spectroscopic analysis of nitrogen in cotton leaves. Applied Spectroscopy, 56,1484-1489. |
[20] | Smith BM, Gemperline PJ (2000). Wavelength selection and optimization of pattern recognition methods using the genetic algorithm. Analytica Chimica Acta, 423,167-177. |
[21] |
Subasi A, Alkan A, Koklukaya E, Kiymik MK (2005). Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Networks, 18,985-997.
DOI URL PMID |
[22] | Wen X (闻新), Zhou L (周露), Wang DL (王丹力), Xiong XY (熊晓英) (2001). MATLAB Design for Neural Networks Application (MATLAB神经网络应用设计). Science Press, Beijing.225-232. (in Chinese) |
[23] | Yan YL (严衍禄) (2005). Theoretical Principle of Near Infrared Spectroscopy and Its Application (近红外光谱分析基础与应用). China Light Industry Press, Beijing.1-189. (in Chinese) |
[24] | Zhang LD (张录达), Shen XN (沈晓南), Zhao LL (赵龙莲), Li JH (李军会), Zhang JP (张建平), Xie WY (谢雯燕), Shu RX (束茹欣) (2000). Application of principal component all possible regression in quantitative analysis of flue-cured tobacco and wheat using near-infrared spectroscopy. Chinese Journal of Analytical Chemistry (分析化学), 28,723-726.(in Chinese with English abstract) |
[25] |
Zhang Q, Benveniste A (1992). Wavelet networks. IEEE Transactions on Neural Networks, 3,889-898.
DOI URL PMID |
[26] | Zhang YS (张玉森), Yao X (姚霞), Tian YC (田永超), Cao WX (曹卫星), Zhu Y (朱艳) (2010). Estimating leaf nitrogen content with near infrared reflectance spectroscopy in rice. Chinese Journal of Plant Ecology (植物生态学报), 34,704-712. (in Chinese with English abstract) |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[3] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[4] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[5] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[6] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[7] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[8] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[9] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[10] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[11] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[12] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[13] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[14] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[15] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19