Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (3): 397-405.DOI: 10.17521/cjpe.2015.0395
Special Issue: 全球变化与生态系统; 青藏高原植物生态学:生态系统生态学; 碳循环
• Research Articles • Previous Articles
GENG Xiao-Dong1,2,Xu Ri1,3,*(),LIU Yong-Wen1,3
Online:
2018-03-20
Published:
2017-06-16
Contact:
Ri Xu
Supported by:
GENG Xiao-Dong, Xu Ri, LIU Yong-Wen. Responses of ecosystem carbon exchange to multi-level water addition in an alpine meadow in Namtso of Qinghai-Xizang Plateau, China[J]. Chin J Plant Ecol, 2018, 42(3): 397-405.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0395
Fig. 2 Seasonal variations in soil volumetric water content (SVWC) at 5 cm depth under different water addition treatments (A, B) and precipitation for alpine meadow (C, D) in 2013 and 2014. Values 0%-100% represent different levels of water addition treatments.
Fig. 3 Soil volumetric water content (SVWC) (A, B) and temperature (C, D) at 5 cm depth under different water addition treatments in the growing seasons of 2013 and 2014 (mean ± SE). Same letters indicate a non-significant difference (p > 0.05) according to the least significant difference (LSD) test, and different letters indicate significant differences (p < 0.05) among treatments. Temperature data were not available for the water addition treatment of 60% in 2014.
Fig. 4 Seasonal dynamics of net ecosystem carbon exchange (NEE, ▼) (control), precipitation (column) and temperature (line) in 2014. The NEE value is the mean of multiple investigations in a day, and the temperature refers to the soil temperature at 5 cm depth.
Fig. 5 Net ecosystem carbon exchange (NEE) (A, B), ecosystem respiration (ER) (C, D) and gross ecosystem production (GEP) (E, F) under different water addition treatments in the growing seasons of 2013 and 2014 (mean ± SE). Same letters indicate a non-significant difference (p > 0.05) according to the least significant difference (LSD) test, and different letters indicate significant differences (p < 0.05) among treatments.
[1] |
Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM ( 2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221-235.
DOI URL PMID |
[2] |
Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH ( 2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Global Change Biology, 16, 1306-1316.
DOI URL |
[3] |
Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Korner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K ( 2012). Precipitation manipulation experiments—Challenges and recommendations for the future. Ecology Letters, 15, 899-911.
DOI URL PMID |
[4] |
Chen SP, Lin GH, Huang JH, Jenerette GD ( 2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 15, 2450-2461.
DOI URL |
[5] |
Curry CL ( 2007). Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochemical Cycles, 21, GB4012. DOI: 10.1029/2006GB002818.
DOI URL |
[6] |
Flanagan LB, Sharp EJ, Letts MG ( 2013). Response of plant biomass and soil respiration to experimental warming and precipitation manipulation in a Northern Great Plains grassland. Agricultural and Forest Meteorology, 173, 40-52.
DOI URL |
[7] |
Flanagan LB, Wever LA, Carlson PJ ( 2002). Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8, 599-615.
DOI URL |
[8] |
Fu Y, Zheng Z, Yu G, Hu Z, Sun X, Shi P, Wang Y, Zhao X ( 2009). Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences, 6, 2879-2893.
DOI URL |
[9] | Ganjurjav ( 2013). Ecosystem Carbon Exchange Under Warming and Precipitation Enhancement in Kobresia Pygmaea Meadow in North Tibet. Master degree dissertation, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing. 29-37. |
干珠扎布 ( 2013). 增温增雨对藏北小嵩草草甸生态系统碳交换的影响. 硕士学位论文, 中国农业科学院农业环境与可持续发展研究所, 北京. 29-37. | |
[10] | Gao QZ, Li Y, Wan YF, Qin XB, Jiangcun WZ, Liu YH ( 2009). Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Climatic Change, 97, 515-528. |
[11] |
Gu S, Tang YH, Cui XY, Du MY, Zhao L, Li YN, Xu SX, Zhou HK, Kato T, Qi PT, Zhao XQ ( 2008). Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Geophysical Research— Atmospheres, 113, D08118. DOI: 10.1029/2007JD009173.
DOI URL |
[12] |
Gu S, Tang YH, Du MY, Kato T, Li YN, Cui XY, Zhao XQ ( 2003). Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Geophysical Research—Atmospheres, 108, 4670. DOI: 10.1029/2003JD003584.
DOI |
[13] |
Hu J, Hopping KA, Bump JK, Kang SC, Klein JA ( 2013). Climate change and water use partitioning by different plant functional groups in a grassland on the Tibetan Plateau. PLOS ONE, 8, e75503. DOI: 10.1371/journal.pone.0075503.
DOI URL PMID |
[14] |
Hu QW, Wu Q, Cao GM, Li D, Long RJ, Wang YS ( 2008). Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau. Journal of Integrative Plant Biology, 50, 271-279.
DOI URL PMID |
[15] |
Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG ( 2004). Convergence across biomes to a common rain-use efficiency. Nature, 429, 651-654.
DOI URL PMID |
[16] |
Jackson MB, Colmer TD ( 2005). Response and adaptation by plants to flooding stress—Preface. Annals of Botany, 96, 501-505.
DOI URL PMID |
[17] |
Jasoni RL, Smith SD, Arnone JA ( 2005). Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology, 11, 749-756.
DOI URL |
[18] |
Kato T, Tang YH, Gu S, Hirota M, Du MY, Li NY, Zhao XQ ( 2006). Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 12, 1285-1298.
DOI URL |
[19] |
Li L, Yang S, Wang ZY, Zhu XD, Tang HY ( 2010). Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arctic Antarctic and Alpine Research, 42, 449-457.
DOI URL |
[20] | Liu YW ( 2014). Nitrogen Wet Deposition on the Tibetan Plateau and Typical Grazing Steppe Responses to Nitrogen Fertilization. PhD dissertation, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing. |
刘永稳 ( 2014). 青藏高原氮湿沉降现状及典型放牧草原对氮施肥的响应. 博士学位论文, 中国科学院青藏高原研究所, 北京. | |
[21] |
Marcolla B, Cescatti A, Manca G, Zorer R, Cavagna M, Fiora A, Gianelle D, Rodeghiero M, Sottocornola M, Zampedri R ( 2011). Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow. Agricultural and Forest Meteorology, 151, 1233-1243.
DOI URL |
[22] |
Ni J ( 2002). Carbon storage in grasslands of China. Journal of Arid Environments, 50, 205-218.
DOI URL |
[23] |
Niu SL, Yang HY, Zhang Z, Wu MY, Lu Q, Li LH, Han XG, Wan SQ ( 2009). Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems, 12, 915-926.
DOI URL |
[24] |
Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, Fang JY ( 2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43-51.
DOI URL PMID |
[25] |
Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M ( 2013). Climate extremes and the carbon cycle. Nature, 500, 287-295.
DOI URL PMID |
[26] |
Shen ZX, Li YL, Fu G ( 2015). Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet. Applied Soil Ecology, 90, 35-40.
DOI URL |
[27] |
Skopp J, Jawson MD, Doran JW ( 1990). Steady-state aerobic microbial activity as a function of soil-water content. Soil Science Society of America Journal, 54, 1619-1625.
DOI URL |
[28] |
van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubkova M, Friedl MA, Jung M, van den Hurk BJJM, de Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, van der Werf GR, Wang G ( 2011). Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 151, 765-773.
DOI URL |
[29] |
Wan SQ, Norby RJ, Ledford J, Weltzin JF ( 2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424.
DOI URL |
[30] | Wei D, Xu-Ri, Tenzin T, Wang YS, Wang YH ( 2015). Considerable methane uptake by alpine grasslands despite the cold climate: In situ measurements on the central Tibetan Plateau, 2008-2013. Global Change Biology, 21, 777-788. |
[31] |
Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC ( 2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience, 53, 941-952.
DOI URL |
[32] |
Williamson R ( 2013). Researchers illustrate the impact of climate extremes on the carbon cycle. Carbon Management, 4, 481-481.
DOI URL |
[33] |
Wu ZT, Dijkstra P, Koch GW, Penuelas J, Hungate BA ( 2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17, 927-942.
DOI URL |
[34] |
Xu LL, Zhang XZ, Shi PL, Yu GR, Sun XM ( 2005). Net ecosystem carbon dioxide exchange of alpine meadow in the Tibetan Plateau from August to October. Acta Ecologica Sinica, 25, 1948-1952.
DOI URL |
徐玲玲, 张宪洲, 石培礼, 于贵瑞, 孙晓敏 ( 2005). 青藏高原高寒草甸生态系统净二氧化碳交换量特征. 生态学报, 25, 1948-1952.
DOI URL |
|
[35] |
Xu ZZ, Zhou GS ( 2011). Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass. BMC Plant Biology, 11, 21.
DOI URL PMID |
[36] |
Yan L, Zhou GS, Wang YH, Hu TY, Sui XH ( 2015). The spatial and temporal dynamics of carbon budget in the alpine grasslands on the Qinghai-Tibetan Plateau using the Terrestrial Ecosystem Model. Journal of Cleaner Production, 107, 195-201.
DOI URL |
[37] | Yang K, Lin ED, Gao QZ, Wan YF, Jiangcun WZ, Wang BS, LI WF ( 2010). Simulation of climate change impacts on grassland productivity in Northern Tibet. Chinese Journal of Ecology, 29, 1469-1476. |
杨凯, 林而达, 高清竹, 万运帆, 江村旺扎, 王宝山, 李文福 ( 2010). 气候变化对藏北地区草地生产力的影响模拟. 生态学杂志, 29, 1469-1476. | |
[38] |
Yang ZP, Hua OY, Zhang XZ, Xu XL, Zhou CP, Yang WB ( 2011). Spatial variability of soil moisture at typical alpine meadow and steppe sites in the Qinghai-Tibetan Plateau permafrost region. Environmental Earth Sciences, 63, 477-488.
DOI URL |
[39] |
Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, Wen XF, Li XR, Zhang LM, Zhang L, Su W, Li SG, Sun XM, Zhang YP, Zhang JH, Yan JH, Wang HM, Zhou GS, Jia BR, Xiang WH, Li YN, Zhao L, Wang YF, Shi PL, Chen SP, Xin XP, Zhao FH, Wang YY, Tong CL ( 2013). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19, 798-810.
DOI URL PMID |
[40] | Zhang FW, Li YN, Zhao XQ, Gu S, Wang QX, Du MY, Tang YH ( 2008). Effects of one precipitation process on CO2 flux and thermal transportation in alpine meadow of Qinghai-Tibetan Plateau. Chinese Journal of Ecology, 27, 1685-1691. |
张法伟, 李英年, 赵新全, 古松, 王勤学, 杜明远, 唐艳鸿 ( 2008). 一次降水过程对青藏高原高寒草甸CO2通量和热量输送的影响. 生态学杂志, 27, 1685-1691. | |
[41] |
Zhang RH, Su FG, Jiang ZH, Gao XJ, Guo DL, Ni J, You QL, Lan C, Zhou BT ( 2015). An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century. Chinese Science Bulletin, 60, 3036-3047.
DOI URL |
张人禾, 苏凤阁, 江志红, 高学杰, 郭东林, 倪健, 游庆龙, 兰措, 周波涛 ( 2015). 青藏高原21世纪气候和环境变化预估研究进展. 科学通报, 60, 3036-3047.
DOI URL |
|
[42] |
Zhang YL, Li BY, Zheng D ( 2002). A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21, 1-8.
DOI URL |
张镱锂, 李炳元, 郑度 ( 2002). 论青藏高原范围与面积. 地理研究, 21, 1-8.
DOI URL |
|
[43] |
Zhao L, Li YN, Xu SX, Zhou HK, Gu S, Yu GR, Zhao XQ ( 2006). Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrub land on Qinghai-Tibetan Plateau. Global Change Biology, 12, 1940-1953.
DOI URL |
[44] | Zheng D, Zhu LP ( 2000). Formation and Evolution, Environmental Changes and Sustainable Development on the Tibetan Plateau. Academy Press, Beijing. 466. |
[45] |
Zhou WP, Hui DF, Shen WJ ( 2014). Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: A laboratory incubation study. PLOS ONE, 9, e92531. DOI: 10.1371/journal.pone.0092531.
DOI URL PMID |
[46] |
Zhu XJ, Yu GR, Wang QF, Gao YN, He HL, Zheng H, Chen Z, Shi PL, Zhao L, Li YN, Wang YF, Zhang YP, Yan JH, Wang HM, Zhao FH, Zhang JH ( 2016). Approaches of climate factors affecting the spatial variation of annual gross primary productivity among terrestrial ecosystems in China. Ecological Indicators, 62, 174-181.
DOI URL |
[47] | Zhuang Q, He J, Lu Y, Ji L, Xiao J, Luo T ( 2010). Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: An analysis with a process-based biogeochemical model. Global Ecology and Biogeography, 19, 649-662. |
[48] |
Zhuang QL, Chen M, Xu K, Tang JY, Saikawa E, Lu YY, Melillo JM, Prinn RG, McGuire AD ( 2013). Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition. Global Biogeochemical Cycles, 27, 650-663.
DOI URL |
[1] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[2] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[3] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[4] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[5] | Yan-Fang LIU, Weng-Ying WANG, Nan-Ji SUO, Hua-Kun ZHOU, Xu-Feng MAO, Shi-Xiong WANG, Zhe CHEN. Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China [J]. Chin J Plant Ecol, 2022, 46(1): 27-39. |
[6] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[7] | MA Shu-Qin, WANG Zi-Wei, CHEN You-Chao, LU Xu-Yang. Effect of soil organic matter chemical compositions on soil protease and urease activity in alpine grassland soils in Northern Xizang, China [J]. Chin J Plant Ecol, 2021, 45(5): 516-527. |
[8] | LI Jie, CHEN Ying-Ying, QIAO Fu-Yun, ZHI Di-Gang, GUO Zheng-Gang. Effects of disturbance by plateau pika on the β diversity of an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(5): 476-486. |
[9] | DONG Li-Jun, LI Jin-Hua, CHEN Shan, ZHANG Rui, SUN Jian, MA Miao-Jun. Changes in soil organic carbon content and their causes during the degradation of alpine meadows in Zoigê Wetland [J]. Chin J Plant Ecol, 2021, 45(5): 507-515. |
[10] | YANG De-Chun, HU Lei, SONG Xiao-Yan, WANG Chang-Ting. Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(12): 1314-1328. |
[11] | WANG Yu-Xian, HOU Meng, XIE Yan-Yan, LIU Zuo-Jun, ZHAO Zhi-Gang, LU Ning-Na. Relationships of flower longevity with attractiveness traits and their effects on female fitness of alpine meadow plants on the Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2020, 44(9): 905-915. |
[12] | LI Xue-Ying, ZHU Wen-Quan, LI Pei-Xian, XIE Zhi-Ying, ZHAO Cen-Liang. Predicting phenology shifts of herbaceous plants on the Qinghai-Xizang Plateau under climate warming with the space-for-time method [J]. Chin J Plant Ecol, 2020, 44(7): 742-751. |
[13] | ZHANG Chan, AN Yu-Meng, Yun JÄSCHKE, WANG Lin-Lin, ZHOU Zhi-Li, WANG Li-Ping, YANG Yong-Ping, DUAN Yuan-Wen. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands [J]. Chin J Plant Ecol, 2020, 44(1): 1-21. |
[14] | JING Hong-Xia,SUN Ning-Xiao,Muhammad UMAIR,LIU Chun-Jiang,DU Hong-Mei. Stoichiometric characteristics of soils and dominant shrub leaves and their responses to water addition in different seasons in degraded karst areas in Southern Yunnan of China [J]. Chin J Plant Ecol, 2020, 44(1): 56-69. |
[15] | CHEN Jin, SONG Ming-Hua, LI Yi-Kang. 13C pulse labeling reveals the effects of grazing on partitioning of assimilated carbon in an alpine meadow [J]. Chin J Plant Ecol, 2019, 43(7): 576-584. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn