Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (10): 1040-1049.DOI: 10.17521/cjpe.2020.0119
Special Issue: 青藏高原植物生态学:种群生态学
• Research Articles • Previous Articles Next Articles
CHEN Guo-Peng1,*(), YANG Ke-Tong1, WANG Li1, WANG Fei2, CAO Xiu-Wen2, CHEN Lin-Sheng3
Received:
2020-04-24
Accepted:
2020-08-22
Online:
2020-10-20
Published:
2020-11-02
Contact:
CHEN Guo-Peng
Supported by:
CHEN Guo-Peng, YANG Ke-Tong, WANG Li, WANG Fei, CAO Xiu-Wen, CHEN Lin-Sheng. Allometric relations for biomass partitioning of seven alpine Rhododendron species in south of Gansu[J]. Chin J Plant Ecol, 2020, 44(10): 1040-1049.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0119
编号No. | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 坡向 Aspect | 坡度 Slope (°) | 地点 Site | 优势种 Dominant species | 盖度 Coverage (%) | 密度 Density (individual·m-2) | 平均基径 Mean BD (mm) | 平均株高 Mean PH (cm) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 33.72° | 104.09° | 3 488 | 东北 Northeast | 43 | 洋布梁 Yangbuliang | 黄毛杜鹃 R. rufum | 100 | 2.36 | 55.32 | 256.95 |
2 | 33.75° | 104.15° | 2 810 | 东 East | 28 | 烧哈沟脑 Shaohagounao | 美容杜鹃、山光杜鹃、岷江冷杉、太白杜鹃、橿子栎、峨眉蔷薇 R. calophytum, R. oreodoxa, Abies faxoniana, R. taibaiense, Quercus baronii, Rosa omeiensis | 65 | 0.45 | 71.34 | 259.13 |
3 | 33.00° | 104.14° | 2 766 | 西北 Northwest | 33 | 人命池沟 Renmingchigou | 美容杜鹃、山光杜鹃、岷江冷杉、糙皮桦 Rhododendron. calophytum, R. oreodoxa, Abies faxoniana, Betula utilis | 55 | 4.05 | 19.67 | 208.15 |
4 | 33.71° | 104.05° | 3 488 | 东南 Southeast | 12 | 八小号 Baxiaohao | 黄毛杜鹃、头花杜鹃、高山柳 R. rufum, R. capitatum, Salix cupularis | 95 | 4.84 | 15.51 | 52.26 |
5 | 33.71° | 104.05° | 3 494 | 东南 Southeast | 9 | 八小号 Baxiaohao | 陇蜀杜鹃、头花杜鹃、金露梅、高山柳 R. przewalskii, R. capitatum, Potentilla fruticosa, Salix cupularis | 95 | 9.04 | 10.68 | 107.79 |
6 | 33.69° | 104.05° | 3 517 | 东 East | 44 | 青砂梁 Qingshaliang | 陇蜀杜鹃、头花杜鹃 R. przewalskii, R. capitatum | 100 | 12.34 | 13.32 | 56.32 |
7 | 33.34° | 104.50° | 3 693 | 东 East | 36 | 扎尕梁 Zhagaliang | 陇蜀杜鹃、头花杜鹃 R. przewalskii, R. capitatum | 66 | 8.58 | 8.72 | 38.42 |
8 | 33.35° | 104.50° | 3 605 | 东 East | 38 | 扎尕梁 Zhagaliang | 陇蜀杜鹃、头花杜鹃、高山柳 R. przewalskii, R. capitatum, Salix cupularis | 88 | 7.66 | 22.35 | 106.58 |
9 | 33.36° | 104.52° | 3 151 | 北 North | 15 | 扎尕梁 Zhagaliang | 岷江冷杉、山光杜鹃、麻花杜鹃 Abies faxoniana, R. oreodoxa, R. mcauliferum | 60 | 3.65 | 35.57 | 183.36 |
Table 1 Information for samples of seven alpine Rhododendron species in south of Gansu
编号No. | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 坡向 Aspect | 坡度 Slope (°) | 地点 Site | 优势种 Dominant species | 盖度 Coverage (%) | 密度 Density (individual·m-2) | 平均基径 Mean BD (mm) | 平均株高 Mean PH (cm) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 33.72° | 104.09° | 3 488 | 东北 Northeast | 43 | 洋布梁 Yangbuliang | 黄毛杜鹃 R. rufum | 100 | 2.36 | 55.32 | 256.95 |
2 | 33.75° | 104.15° | 2 810 | 东 East | 28 | 烧哈沟脑 Shaohagounao | 美容杜鹃、山光杜鹃、岷江冷杉、太白杜鹃、橿子栎、峨眉蔷薇 R. calophytum, R. oreodoxa, Abies faxoniana, R. taibaiense, Quercus baronii, Rosa omeiensis | 65 | 0.45 | 71.34 | 259.13 |
3 | 33.00° | 104.14° | 2 766 | 西北 Northwest | 33 | 人命池沟 Renmingchigou | 美容杜鹃、山光杜鹃、岷江冷杉、糙皮桦 Rhododendron. calophytum, R. oreodoxa, Abies faxoniana, Betula utilis | 55 | 4.05 | 19.67 | 208.15 |
4 | 33.71° | 104.05° | 3 488 | 东南 Southeast | 12 | 八小号 Baxiaohao | 黄毛杜鹃、头花杜鹃、高山柳 R. rufum, R. capitatum, Salix cupularis | 95 | 4.84 | 15.51 | 52.26 |
5 | 33.71° | 104.05° | 3 494 | 东南 Southeast | 9 | 八小号 Baxiaohao | 陇蜀杜鹃、头花杜鹃、金露梅、高山柳 R. przewalskii, R. capitatum, Potentilla fruticosa, Salix cupularis | 95 | 9.04 | 10.68 | 107.79 |
6 | 33.69° | 104.05° | 3 517 | 东 East | 44 | 青砂梁 Qingshaliang | 陇蜀杜鹃、头花杜鹃 R. przewalskii, R. capitatum | 100 | 12.34 | 13.32 | 56.32 |
7 | 33.34° | 104.50° | 3 693 | 东 East | 36 | 扎尕梁 Zhagaliang | 陇蜀杜鹃、头花杜鹃 R. przewalskii, R. capitatum | 66 | 8.58 | 8.72 | 38.42 |
8 | 33.35° | 104.50° | 3 605 | 东 East | 38 | 扎尕梁 Zhagaliang | 陇蜀杜鹃、头花杜鹃、高山柳 R. przewalskii, R. capitatum, Salix cupularis | 88 | 7.66 | 22.35 | 106.58 |
9 | 33.36° | 104.52° | 3 151 | 北 North | 15 | 扎尕梁 Zhagaliang | 岷江冷杉、山光杜鹃、麻花杜鹃 Abies faxoniana, R. oreodoxa, R. mcauliferum | 60 | 3.65 | 35.57 | 183.36 |
Fig. 1 Biomass allocation for seven alpine Rhododendron species in south of Gansu. A, R. rufum. B, R. przewalskii. C, R. calophytum. D, R. oreodoxa. E, R. taibaiense. F, R. capitatum. G, R. maculiferum. H, Rhododendron spp. PLB, percent of leaf biomass. PSB, percent of stem biomass. PRB, percent of root biomass.
种 Species | 根生物量 Root biomass | 茎生物量 Stem biomass | 叶生物量 Leaf biomass | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
B | * | * | ns | |||||||||||||||
C | ns | ns | * | * | * | * | ||||||||||||
D | ns | * | ns | * | * | * | * | ns | * | |||||||||
E | ns | ns | ns | ns | ns | * | * | * | ns | ns | * | ns | ||||||
F | ns | ns | ns | ns | ns | ns | ns | * | * | ns | ns | ns | * | * | ns | |||
G | ns | * | ns | ns | ns | ns | ns | * | * | ns | ns | ns | ns | ns | * | * | * | ns |
Table 2 Multiple comparison of the biomass allocation of different organs for seven alpine Rhododendron species in south of Gansu
种 Species | 根生物量 Root biomass | 茎生物量 Stem biomass | 叶生物量 Leaf biomass | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
B | * | * | ns | |||||||||||||||
C | ns | ns | * | * | * | * | ||||||||||||
D | ns | * | ns | * | * | * | * | ns | * | |||||||||
E | ns | ns | ns | ns | ns | * | * | * | ns | ns | * | ns | ||||||
F | ns | ns | ns | ns | ns | ns | ns | * | * | ns | ns | ns | * | * | ns | |||
G | ns | * | ns | ns | ns | ns | ns | * | * | ns | ns | ns | ns | ns | * | * | * | ns |
Fig. 2 Regression relationships between the leaf biomass (BL) and stem biomass (BS) for seven alpine Rhododendron species in south of Gansu. A, R. rufum. B, R. przewalskii. C, R. calophytum. D, R. oreodoxa. E, R. taibaiense. F, R. capitatum. G, R. maculiferum. H, Rhododendron spp. CI, confidence interval.
树种 Speices | logBL vs. logBS | logBL vs. logBR | logBS vs. logBR | logBA vs. logBR | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
B | ns | ** | ** | ** | ||||||||||||||||||||
C | ns | ns | ** | ** | ** | ** | ** | ** | ||||||||||||||||
D | * | * | ns | ** | ** | ns | * | ** | ** | ** | ** | ** | ||||||||||||
E | ** | * | ** | ** | ns | ** | ** | ** | ** | ** | ns | * | ** | ** | ** | ns | ||||||||
F | ** | ** | ** | ** | * | ** | ns | ** | ** | ** | ns | ** | ** | ns | ** | ns | ** | ** | ** | ** | ||||
G | ** | * | ** | ** | ns | ns | ** | ns | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** |
Table 3 Multiple comparison of allometric slopes between above- and below-ground biomass for seven alpine Rhododendron species in south of Gansu
树种 Speices | logBL vs. logBS | logBL vs. logBR | logBS vs. logBR | logBA vs. logBR | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
B | ns | ** | ** | ** | ||||||||||||||||||||
C | ns | ns | ** | ** | ** | ** | ** | ** | ||||||||||||||||
D | * | * | ns | ** | ** | ns | * | ** | ** | ** | ** | ** | ||||||||||||
E | ** | * | ** | ** | ns | ** | ** | ** | ** | ** | ns | * | ** | ** | ** | ns | ||||||||
F | ** | ** | ** | ** | * | ** | ns | ** | ** | ** | ns | ** | ** | ns | ** | ns | ** | ** | ** | ** | ||||
G | ** | * | ** | ** | ns | ns | ** | ns | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** |
Fig. 3 Regression relationships between the leaf biomass (BL) and root biomass (BR) for seven alpine Rhododendron species in south of Gansu. A, R. rufum. B, R. przewalskii. C, R. calophytum. D, R. oreodoxa. E, R. taibaiense. F, R. capitatum. G, R. maculiferum. H, Rhododendron spp. CI, confidence interval.
Fig. 4 Regression relationships between the stem biomass (BS) and root biomass (BR) for seven alpine Rhododendron species in south of Gansu. A, R. rufum. B, R. przewalskii. C, R. calophytum. D, R. oreodoxa. E, R. taibaiense. F, R. capitatum. G, R. maculiferum. H, Rhododendron spp. CI, confidence interval.
Fig. 5 Regression relationships of aboveground biomass (BA) and root biomass (BR) for seven alpine Rhododendron species in south of Gansu. A, R. rufum. B, R. przewalskii. C, R. calophytum. D, R. oreodoxa. E, R. taibaiense. F, R. capitatum. G, R. maculiferum. H, Rhododendron spp. CI, confidence interval.
[1] | Bloom AJ, Chapin III FS, Mooney HA (1985). Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics, 16, 363-392. |
[2] | Chen GP, Zhao WZ (2016). Effects of age classes on metabolic exponents of Salix psammophila branches. Chinese Journal of Applied Ecology, 27, 1870-1876. |
[ 陈国鹏, 赵文智 (2016). 沙柳丛生枝代谢指数的龄级效应. 应用生态学报, 27, 1870-1876.] | |
[3] | Chen GP, Zhao WZ, He SX, Fu X (2016). Biomass allocation and allometric relationship in aboveground components of Salix psammophila branches. Journal of Desert Research, 36, 357-363. |
[ 陈国鹏, 赵文智, 何世雄, 付晓 (2016). 沙柳(Salix psammophila)丛生枝生物量最优分配与异速生长. 中国沙漠, 36, 357-363.] | |
[4] | Cheng DL, Ma YZ, Zhong QL, Xu WF (2014). Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings. Ecology and Evolution, 4, 3968-3977. |
[5] | Cheng DL, Niklas KJ (2007). Above- and below-ground biomass relationships across 1534 forested communities. Annals of Botany, 99, 95-102. |
[6] | Dybzinski R, Farrior C, Wolf A, Reich PB, Pacala SW (2011). Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. The American Naturalist, 177, 153-166. |
[7] | Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520. |
[8] | Gao Q, Yang XC, Yin CY, Liu Q (2014). Estimation of biomass allocation and carbon density in alpine dwarf shrubs in Garzê Zangzu Autonomous Prefecture of Sichuan Province, China. Chinese Journal of Plant Ecology, 38, 355-365. |
[ 高巧, 阳小成, 尹春英, 刘庆 (2014). 四川省甘孜藏族自治州高寒矮灌丛生物量分配及其碳密度的估算. 植物生态学报, 38, 355-365.] | |
[9] | Gargaglione V, Peri PL, Rubio G (2010). Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. Forest Ecology and Management, 259, 1118-1126. |
[10] | Gleeson SK, Tilman D (1990). Allocation and the transient dynamics of succession on poor soils. Ecology, 71, 1144-1155. |
[11] | Liu ZC, Liu HF, Zhao D, Luo N, Sun YY, Hao XR, Liu T (2015). Influence of altitude and difference of different- sized individuals on reproductive allocation in Salsola affinis C. A. Mey. and Salsola nitraria Pall. Acta Ecologica Sinica, 35, 5957-5965. |
[ 刘尊驰, 刘华峰, 赵丹, 罗宁, 孙园园, 郝晓冉, 刘彤 (2015). 紫翅猪毛菜、钠猪毛菜不同个体大小繁殖分配差异及随海拔的变化. 生态学报, 35, 5957-5965.] | |
[12] | Luo YJ, Wang XK, Zhang XQ, Booth TH, Lu F (2012). Root: shoot ratios across China’s forests: forest type and climatic effects. Forest Ecology and Management, 269, 19-25. |
[13] | McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21, 713-720. |
[14] | Müller I, Schmid B, Weiner J (2000). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 115-127. |
[15] | Niklas KJ (2005). Modelling below- and above-ground biomass for non-woody and woody plants. Annals of Botany, 95, 315-321. |
[16] | Niklas KJ (2006). A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytologist, 171, 27-40. |
[17] | Niklas KJ, Enquist BJ (2002a). Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany, 89, 812-819. |
[18] | Niklas KJ, Enquist BJ (2002b). On the vegetative biomass partitioning of seed plant leaves, stems, and roots. The American Naturalist, 159, 482-497. |
[19] | Poorter H, Jagodzinski AM, Ruiz-Peinado R, Kuyah S, Luo YJ, Oleksyn J, Usoltsev VA, Buckley TN, Reich PB, Sack L (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 208, 736-749. |
[20] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. |
[21] | Poorter H, Sack L (2012). Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Frontiers in Plant Science, 3, 259-269. |
[22] | Reich PB, Luo YJ, Bradford JB, Poorter H, Perry CH, Oleksyn J (2014). Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences of the United States of America, 111, 13721-13726. |
[23] | Tao Y, Zhang YM (2014). Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China. Acta Prataculturae Sinica, 23, 38-48. |
[ 陶冶, 张元明 (2014). 准噶尔荒漠6种类短命植物生物量分配与异速生长关系. 草业学报, 23, 38-48.] | |
[24] | Veresoglou SD, Peñuelas J (2019). Variance in biomass- allocation fractions is explained by distribution in European trees. New Phytologist, 222, 1352-1363. |
[25] | Wang Y, Xu WT, Xiong GM, Li JX, Zhao CM, Lu ZJ, Li YL, Xie ZQ (2017). Biomass allocation patterns of Loropetalum chinense. Chinese Journal of Plant Ecology, 41, 105-114. |
[ 王杨, 徐文婷, 熊高明, 李家湘, 赵常明, 卢志军, 李跃林, 谢宗强 (2017). 檵木生物量分配特征. 植物生态学报, 41, 105-114.] | |
[26] | Wei J, Wu G, Deng HB (2004). Vegetation biomass distribution characteristics of alpine tundra ecosystem in Changbai Mountains. Chinese Journal of Applied Ecology, 15, 1999-2004. |
[ 魏晶, 吴钢, 邓红兵 (2004). 长白山高山冻原植被生物量的分布规律. 应用生态学报, 15, 1999-2004.] | |
[27] | Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[28] | West GB, Brown JH, Enquist BJ (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122-126. |
[29] |
West GB, Brown JH, Enquist BJ (1999). A general model for the structure and allometry of plant vascular systems. Nature, 400, 664-667.
DOI URL |
[30] | Xu B, Wang JN, Shi FS, Gao J, Wu N (2013). Adaptation of biomass allocation patterns of wild Fritillaria unibracteata to alpine environment in the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 37, 187-196. |
[ 徐波, 王金牛, 石福孙, 高景, 吴宁 (2013). 青藏高原东缘野生暗紫贝母生物量分配格局对高山生态环境的适应. 植物生态学报, 37, 187-196.] | |
[31] | Yan BG, Fan B, He GX, Shi LT, Pan ZX, Li JC, Yue XW, Liu GC (2016). Biomass allocations and their response to environmental factors for grass species in an arid-hot valley. Chinese Journal of Applied Ecology, 27, 3173-3181. |
[ 闫帮国, 樊博, 何光熊, 史亮涛, 潘志贤, 李建查, 岳学文, 刘刚才 (2016). 干热河谷草本植物生物量分配及其对环境因子的响应. 应用生态学报, 27, 3173-3181.] | |
[32] | Yang HT, Li XR, Liu LC, Jia RL, Wang ZR, Li XJ, Li G (2013). Biomass allocation patterns of four shrubs in desert grassland. Journal of Desert Research, 33, 1340-1348. |
[ 杨昊天, 李新荣, 刘立超, 贾荣亮, 王增如, 李小军, 李刚 (2013). 荒漠草地4种灌木生物量分配特征. 中国沙漠, 33, 1340-1348.] | |
[33] | Yang LC, Zhao YH, Xu WH, Zhou GY (2018). Species diversity, biomass, and their relationship in the alpine shrubberies of Qinghai Province. Acta Ecologica Sinica, 38, 309-315. |
[ 杨路存, 赵玉红, 徐文华, 周国英 (2018). 青海省高寒灌丛物种多样性、生物量及其关系. 生态学报, 38, 309-315.] | |
[34] | Zhang Q, Li JX, Xu WT, Xiong GM, Xie ZQ (2017). Estimation of biomass allocation and carbon density of Rhododendron simsii shrubland in the subtropical mountainous areas of China. Chinese Journal of Plant Ecology, 41, 43-52. |
[ 张蔷, 李家湘, 徐文婷, 熊高明, 谢宗强 (2017). 中国亚热带山地杜鹃灌丛生物量分配及其碳密度估算. 植物生态学报, 41, 43-52.] | |
[35] | Zhong ZB, Yang LC, Liu HC, Song WZ, Li F, Zhou GY (2014). The main shrubs aboveground biomass and effect factors in Yushu, Qinghai, China. Mountain Research, 32, 678-684. |
[ 钟泽兵, 杨路存, 刘何春, 宋文珠, 李璠, 周国英 (2014). 青海玉树地区主要灌丛类型地上生物量及其影响因素. 山地学报, 32, 678-684.] | |
[36] | Zuo YL, Wang ZM, Xi XQ, Xiang S, Sun SC (2018). Plant biomass allocation strategies of the dominant species in an alpine meadow of northwestern Sichuan, China. Chinese Journal of Applied Environmental Biology, 24, 1195-1203. |
[ 左有璐, 王振孟, 习新强, 向双, 孙书存 (2018). 川西北高寒草甸优势植物生物量分配对策. 应用与环境生物学报, 24, 1195-1203.] |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[8] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[9] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[10] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[11] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[12] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[13] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[14] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[15] | LI Bian-Bian, ZHANG Feng-Hua, ZHAO Ya-Guang, SUN Bing-Nan. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus [J]. Chin J Plant Ecol, 2023, 47(1): 101-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn