植物生态学报 ›› 2007, Vol. 31 ›› Issue (5): 910-918.DOI: 10.17521/cjpe.2007.0115
收稿日期:
2006-12-12
接受日期:
2007-04-28
出版日期:
2007-12-12
发布日期:
2007-09-30
通讯作者:
曾波
作者简介:
* E-mail: bzeng@swu.edu.cn基金资助:
LUO Fang-Li(), ZENG Bo(
), CHEN Ting, YE Xiao-Qi, LIU Dian
Received:
2006-12-12
Accepted:
2007-04-28
Online:
2007-12-12
Published:
2007-09-30
Contact:
ZENG Bo
摘要:
为阐明三峡库区岸生植物秋华柳(Salix variegata)对水淹的耐受机制,模拟三峡库区消落带水淹发生的情况,研究了在不同水淹时间和水淹深度处理下秋华柳的光合和生长特性。实验设置了对照(不进行水淹,常规供水管理)、水淹根部(植株置于水中,植株地下部分被淹没)、水下0.5 m(植株置于水中,植株顶部在水面下0.5 m)和水下2 m(植株置于水中,植株顶部在水面下2 m)4个不同的水淹深度和0、10、20、40、60和90 d 6个不同的水淹时间处理,并测定了在不同水淹时间和水淹深度处理下秋华柳的光合作用、叶绿素荧光和生长。研究结果发现:随着水淹时间的延长,对照和水淹根部植株都具有高的净光合速率、表观量子效率和羧化效率。水淹40 d后,相同水淹深度处理秋华柳植株的净光合速率显著高于耐水湿环境的垂柳(Salix babylonica)(p<0.05)。水淹90 d后,全淹处理植株的光合能力较对照有显著的下降(p<0.05),对照、水下0.5 m和水下2 m植株的净光合速率分别为13.2、10.1和8.05 μmol·m-2·s-1,同时全淹植株PSII的最大光化学效率也有一定程度的下降,显著低于对照和水淹根部处理的植株(p<0.05)。水淹40、60和90 d后,全淹植株的胞间CO2浓度都高于对照和水淹根部植株。随着水淹时间的增加,水淹根部植株不定根数量不断增加,而全淹植株只有极少量的不定根产生。水淹根部植株的主茎长的增量、分枝数的增量、主茎新生叶片数、根生物量的积累和总生物量的积累都高于全淹植株,全淹植株在水淹过程中,其主茎长、分枝数、主茎新叶数、根生物量和总生物量都有增加,同时其凋落叶片较多。水淹90 d后,秋华柳植株的存活率为100%。研究结果表明,秋华柳在经过较长时间的水淹后,表现出较强的光合和生长适应性,可以考虑将秋华柳列为三峡库区消落带植被构建的物种之一。
罗芳丽, 曾波, 陈婷, 叶小齐, 刘巅. 三峡库区岸生植物秋华柳对水淹的光合和生长响应. 植物生态学报, 2007, 31(5): 910-918. DOI: 10.17521/cjpe.2007.0115
LUO Fang-Li, ZENG Bo, CHEN Ting, YE Xiao-Qi, LIU Dian. RESPONSE TO SIMULATED FLOODING OF PHOTOSYNTHESIS AND GROWTH OF RIPARIAN PLANT SALIX VARIEGATA IN THE THREE GORGES RESERVOIR REGION OF CHINA. Chinese Journal of Plant Ecology, 2007, 31(5): 910-918. DOI: 10.17521/cjpe.2007.0115
图1 不同水淹条件下秋华柳的净光合速率、表观量子效率、羧化效率、胞间CO2浓度和PSⅡ的最大光化学效率(平均值±标准误) T1~T4同表1 See Table 1 对每一水淹时间水平,标有不同字母的各处理之间有显著差异(p=0.05) For each level of submergence duration of treatments, means of treatments with different letters are significantly different (p=0.05)
Fig.1 Net photosynthetic rate (Pn), apparent quantum yield (α), carboxylation efficiency (g'm), intercellular CO2 concentration (Ci) and maximal photochemical efficiency of PSⅡ (Fv/Fm) (mean±SE) of Salix variegata subjected to different levels and durations of water submergence stress
水淹时间 Duration of flooding(d) | 水淹深度 Underwater depth | ||||
---|---|---|---|---|---|
T1 | T2 | T3 | T4 | ||
6 | 0 | 3 | 0 | 0 | |
15 | 0 | 17 | 0 | 0 | |
25 | 0 | 20 | 1 | 0 | |
32 | 0 | 24 | 4 | 2 |
表1 不同水淹时间和水淹深度下秋华柳的不定根数量
Table 1 Adventitious roots number of Salix variegata subjected to different levels and durations of water submergence stress
水淹时间 Duration of flooding(d) | 水淹深度 Underwater depth | ||||
---|---|---|---|---|---|
T1 | T2 | T3 | T4 | ||
6 | 0 | 3 | 0 | 0 | |
15 | 0 | 17 | 0 | 0 | |
25 | 0 | 20 | 1 | 0 | |
32 | 0 | 24 | 4 | 2 |
图2 不同水淹条件下秋华柳主茎长、分枝、新长叶片数和凋落叶片数的增加量(平均值±标准误) 图注同图1 Notes see Fig. 1
Fig.2 Increase of stem length, number of shoots, number of newly generated leaves on stem and number of shed leaves on stem (mean±SE) in Salix variegata subjected to different levels and durations of water submergence stress
对照 Control | 水淹根部 Belowground submergence | 水下2 m Submergence with 2 m water depth | |
---|---|---|---|
秋华柳 Salix variegata | 19.9±1.65a | 18.1±2.03a | 14.2±1.82a |
垂柳S. babylonica | 17.5±1.33a | 11.5±1.25b | 9.13±1.06b |
表2 水淹40 d后秋华柳和垂柳的净光合速率(平均值±标准误)
Table 2 The photosynthetic rate (μmol·m-2·s-1) (mean±SE) of Salix variegata and S. babylonica after 40 d inundation treatments
对照 Control | 水淹根部 Belowground submergence | 水下2 m Submergence with 2 m water depth | |
---|---|---|---|
秋华柳 Salix variegata | 19.9±1.65a | 18.1±2.03a | 14.2±1.82a |
垂柳S. babylonica | 17.5±1.33a | 11.5±1.25b | 9.13±1.06b |
[1] | Berry JA, Downton WJS (1982). Environmental regulation of photosynthesis. In: Govind Jed. Photosynthesis Vol Ⅱ. Academic Press, New York. |
[2] | Institute of Botany, the Chinese Academy of Sciences(中国科学院植物研究所) (2001). Iconographia Cormophytorum Sinicorum. Tomus. (中国高等植物图鉴)(第一册). Science Press, Beijing, 362. (in Chinese) |
[3] | Chen HJ, Qualls RG, Blank RR (2005). Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquatic Botany, 82,250-268. |
[4] | Chen HJ, Qualls RG, Miller GC (2002). Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environmental and Experimental Botany, 48,119-128. |
[5] | Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review Plant Physiology, 33,317-345. |
[6] |
Gravatt DA, Kirby CJ (1998). Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiology, 18,411-417.
DOI URL PMID |
[7] | Groeneveld HW, Voesenek LACJ (2003). Submergence-induced petiole elongation in Rumex palustris is controlled by developmental stage and storage compounds. Plant and Soil, 253,115-123. |
[8] | Hook DD (1984). Waterlogging tolerance of lowland tree species of south. Southern Journal of Applied Forestry, 8,136-149. |
[9] | Kawase M, Whitmoger RE (1980). Aerenchyma development in waterlogged plants. American Journal of Botany, 67,18-28. |
[10] |
Kozlowski TT (1997). Responses of woody plants to flooding and salinity. Tree Physiology, 1,1-29.
DOI URL PMID |
[11] | Kozlowski TT, Pallardy SG (1984). Effect of flooding on water, carbohydrate and mineral relations. In: Kozlowski TTed. Flooding and Plant Growth. Academic Press Inc., London,165-193. |
[12] | Krause GH, Weis E (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42,313-349. |
[13] | Laan P, Blom CWPM (1990). Growth and survival responses of Rumex species to flooded and submerged conditions: the importance of shootelongation, underwater photosynthesis and reserve carbohydrates. Journal of Experimental Botany, 41,775-783. |
[14] | Li DH (李敦海), Liu YD (刘永定), Song LR (宋立荣) (1999). The effect of salt stress on some physiological and biochemical characteristics of Nostoc sphaeroides Kütz (cyanobacterium). Acta Hydrobiologica Sinica (水生生物学报), 23,414-419. (in Chinese with English abstract) |
[15] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51,659-668.
DOI URL PMID |
[16] | Mielke MS, de Almeida AF, Gomes FP, Aguilar MAG, Mangabeira PAO (2003). Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environment and Experimental Botany, 50,221-231. |
[17] | Mommer L, Lenssen JPM, Huber H, Visser EJW, Kroon HD (2006). Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. Journal of Ecology, 94,1117-1129. |
[18] |
Mommer L, Visser EJW (2005). Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Annals of Botany, 96,581-589.
DOI URL PMID |
[19] |
Naidoo G, Naidoo S (1992). Waterlogging responses of Sporobolus virginicus(L.). Kunth. Oecologia, 90,445-450.
DOI URL PMID |
[20] | Pezeshki SR (1994). Plant response to flooding. In: Wilkinson REed. Plant-Environment Interactions. Marcel Dekker, New York,289-321. |
[21] |
Pezeshki SR, Pardue JH, Delaune RD (1996). Leaf gas exchange and growth of flood-tolerant and flood-sensitive tree species under low soil redox conditions. Tree Physiology, 16,453-458.
DOI URL PMID |
[22] | Pezeshki SR (2001). Wetland plant responses to soil flooding. Environmental and Experimental Botany, 46,299-312. |
[23] | Rowe RN, Beardsell DV (1973). Waterlogging of fruit trees. Horticultural Abstracts, 43,533-548. |
[24] | Scott HD, Angule JD (1989). Flooding duration effects on soybean growth and yield. Agronomy Journal, 81,631-636. |
[25] | Vervuren PJA, Beurskens SMJH, Blom CWPM (1999). Light acclimation, CO 2 response and long-term capacity of underwater photosynthesis in three terrestrial plant species. Plant, Cell and Environment, 22,959-968. |
[26] | Visser EJW, Voesenek LACJ, Vartapetian BB (2003). Flooding and plant growth. Annals of Botany, 91,107-109. |
[27] | Wang WQ (王文泉), Zhang FS (张福锁) (2001). The physiological and molecular mechanism of adaptation to anaerobiosis in higher plants. Plant Physiology Communications (植物生理学通讯), 2,63-70. (in Chinese) |
[28] | Wang WQ (王文泉), Zheng YZ (郑永战), Mei HX (梅鸿献), Zhang FS (张福锁) (2003). Physiological and structure adaptation in roots of genotypes with different tolerance to waterlogging in Sesame ( Sesamum indicum L.) under anoxia stress. Journal of Plant Genetic Resources (植物遗传资源学报), 4,214-219. (in Chinese with English abstract) |
[29] | Wei HP (魏和平), Li RQ (利容千) (2000). Effect of flooding on morphology, structure and ATPase activity in adventitious root apical cells of maize seedlings. Acta Phytoecologica Sinica (植物生态学报), 24,293-297. (in Chinese with English abstract) |
[30] | Yordanova RY, Alexieva VS, Popova LP (2003). Influence of root oxygen deficiency on photosynthesis and antioxidant status in barley plants. Russian Journal of Plant Physiology, 50,163-167. |
[31] | Yuan H (袁辉), Wang LA (王里奥), Zhan YH (詹艳慧), Huang C (黄川), Hu G (胡刚) (2006). Health evaluation system of the water-level-fluctuation zone in the Three Gorges area. Resources and Environment in the Yangtze Basin (长江流域资源与环境), 15,249-253. (in Chinese with English abstract) |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[4] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[5] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[6] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[7] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[8] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[9] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[10] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[11] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[12] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[13] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[14] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[15] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19