植物生态学报 ›› 2007, Vol. 31 ›› Issue (5): 903-909.DOI: 10.17521/cjpe.2007.0114
吴华兵, 朱艳(), 田永超, 姚霞, 刘晓军, 周治国, 曹卫星
收稿日期:
2006-01-20
接受日期:
2007-04-23
出版日期:
2007-01-20
发布日期:
2007-09-30
通讯作者:
朱艳
作者简介:
* E-mail: yanzhu@njau.edu.cn基金资助:
WU Hua-Bing, ZHU Yan(), TIAN Yong-Chao, YAO Xia, LIU Xiao-Jun, ZHOU Zhi-Guo, CAO Wei-Xing
Received:
2006-01-20
Accepted:
2007-04-23
Online:
2007-01-20
Published:
2007-09-30
Contact:
ZHU Yan
摘要:
建立棉花(Gossypium hirsutum)氮素状况的光谱监测技术对于棉花营养诊断和长势估测具有重要意义。该研究利用冠层高光谱反射率及演变的多种高光谱参数,分析了不同施氮水平下不同棉花品种叶片氮含量与冠层反射光谱的定量关系,建立了棉花叶片氮含量的敏感光谱参数及预测方程。结果显示,棉花叶片氮含量和冠层高光谱反射率随不同施氮水平呈显著变化。棉花叶片氮含量的敏感光谱波段为600~700 nm的可见光波段和750~900 nm的近红外波段,且叶片氮含量与比值植被指数RVI [average (760~850), 700]有密切的定量关系,4个品种的平均决定系数在0.70左右。进一步分析表明,可以用统一的回归方程来描述不同品种、不同生育时期和不同氮素水平下棉花叶片氮含量随反射光谱参数的变化模式,从而为棉花氮素营养的监测诊断与精确施肥提供技术依据。
吴华兵, 朱艳, 田永超, 姚霞, 刘晓军, 周治国, 曹卫星. 棉花冠层高光谱参数与叶片氮含量的定量关系. 植物生态学报, 2007, 31(5): 903-909. DOI: 10.17521/cjpe.2007.0114
WU Hua-Bing, ZHU Yan, TIAN Yong-Chao, YAO Xia, LIU Xiao-Jun, ZHOU Zhi-Guo, CAO Wei-Xing. RELATIONSHIP BETWEEN CANOPY HYPERSPECTRA PARAMETER AND LEAF NITROGEN CONCENTRATION IN COTTON. Chinese Journal of Plant Ecology, 2007, 31(5): 903-909. DOI: 10.17521/cjpe.2007.0114
高光谱参数 Hyperspectral parameter | 计算公式 Algorithm formula | 文献 Reference | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
吸收谷深度 Depth of absorption valley (VDi) | VDi=1- | Baret et al. ( | |||||||||||
吸收谷特征面积 Feature area of absorption valley (V-Areai) | V-Areai= = | Baret et al. ( | |||||||||||
归一化吸收深度 Normalized depth of valley (NVDi) | NVDi=VDi/V-Areai | Baret et al. ( | |||||||||||
比值植被指数 Ratio vegetation index (RVI) | RVI=IR/R | Pearson & Miller ( | |||||||||||
光化学反射指数 Photochemical reflectance index (PRI) | PRI=(R570-R531)/(R570+R531) | Pe?uelas et al. ( | |||||||||||
绿度归一化差值植被指数 Green normalized difference vegetation index (GNDVI) | GNDVI=(R750-R550)/(R750+R550) | Gitelson & Merzlyak ( |
表1 高光谱参数计算方法
Table 1 Algorithm of different hyperspectral parameters
高光谱参数 Hyperspectral parameter | 计算公式 Algorithm formula | 文献 Reference | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
吸收谷深度 Depth of absorption valley (VDi) | VDi=1- | Baret et al. ( | |||||||||||
吸收谷特征面积 Feature area of absorption valley (V-Areai) | V-Areai= = | Baret et al. ( | |||||||||||
归一化吸收深度 Normalized depth of valley (NVDi) | NVDi=VDi/V-Areai | Baret et al. ( | |||||||||||
比值植被指数 Ratio vegetation index (RVI) | RVI=IR/R | Pearson & Miller ( | |||||||||||
光化学反射指数 Photochemical reflectance index (PRI) | PRI=(R570-R531)/(R570+R531) | Pe?uelas et al. ( | |||||||||||
绿度归一化差值植被指数 Green normalized difference vegetation index (GNDVI) | GNDVI=(R750-R550)/(R750+R550) | Gitelson & Merzlyak ( |
年份 Year | 品种 Variety | 施氮水平 N rate (kg N·hm-2) | 代号 Code | 叶片氮含量 Leaf nitrogen concentration (mg·g-1) | ||||
---|---|---|---|---|---|---|---|---|
开花 Flowering | 盛花 Full-blossoming | 始絮 Early opening boll | 吐絮 Opening boll | 盛絮 Full opening boll | ||||
2004 | ‘苏棉12’ ‘Sumian 12’ | 0 | N0 | 20.50 | 24.52 | 22.95 | 22.61 | 21.70 |
150 | N1 | 24.65 | 30.97 | 29.74 | 28.44 | 23.47 | ||
300 | N2 | 27.16 | 33.67 | 32.46 | 29.51 | 29.10 | ||
450 | N3 | 32.82 | 34.88 | 31.72 | 31.91 | 30.37 | ||
F值 F Value | 53.07** | 17.45* | 9.20 | 24.82* | 38.91** | |||
‘中棉29’ ‘Zhongmian 29’ | 0 | N0 | 21.17 | 25.94 | 24.01 | 24.52 | 16.95 | |
150 | N1 | 25.04 | 30.04 | 27.27 | 25.37 | 23.70 | ||
300 | N2 | 28.46 | 34.75 | 31.62 | 27.99 | 28.62 | ||
450 | N3 | 30.59 | 33.70 | 33.37 | 31.19 | 29.92 | ||
F值 F Value | 9.44* | 14.80* | 22.50* | 98.66** | 19.01* | |||
2005 | ‘科棉1号’ ‘Kemian 1’ | 0 | N0 | - | 26.38 | 23.00 | 23.92 | 22.16 |
240 | N4 | - | 33.65 | 30.37 | 28.46 | 27.74 | ||
480 | N5 | - | 35.34 | 33.16 | 34.16 | 32.18 | ||
F值 F Value | - | 40.43* | 223.45** | 47.85* | 45.57* | |||
‘美棉33B’ ‘Meimian 33B’ | 0 | N0 | - | 25.39 | 21.48 | 23.25 | 23.90 | |
240 | N4 | - | 33.57 | 30.73 | 27.95 | 25.54 | ||
480 | N5 | - | 37.50 | 36.82 | 36.35 | 28.64 | ||
F值 F Value | - | 28.55* | 169.91** | 222.30** | 22.82* |
表2 不同品种和施氮水平下棉花开花、盛花、始絮、吐絮、盛絮期的叶片氮含量
Table 2 Leaf nitrogen concentrations of different cotton varieties at flowering, full-blossoming, early opening boll, opening boll and full opening boll stages under different N rates
年份 Year | 品种 Variety | 施氮水平 N rate (kg N·hm-2) | 代号 Code | 叶片氮含量 Leaf nitrogen concentration (mg·g-1) | ||||
---|---|---|---|---|---|---|---|---|
开花 Flowering | 盛花 Full-blossoming | 始絮 Early opening boll | 吐絮 Opening boll | 盛絮 Full opening boll | ||||
2004 | ‘苏棉12’ ‘Sumian 12’ | 0 | N0 | 20.50 | 24.52 | 22.95 | 22.61 | 21.70 |
150 | N1 | 24.65 | 30.97 | 29.74 | 28.44 | 23.47 | ||
300 | N2 | 27.16 | 33.67 | 32.46 | 29.51 | 29.10 | ||
450 | N3 | 32.82 | 34.88 | 31.72 | 31.91 | 30.37 | ||
F值 F Value | 53.07** | 17.45* | 9.20 | 24.82* | 38.91** | |||
‘中棉29’ ‘Zhongmian 29’ | 0 | N0 | 21.17 | 25.94 | 24.01 | 24.52 | 16.95 | |
150 | N1 | 25.04 | 30.04 | 27.27 | 25.37 | 23.70 | ||
300 | N2 | 28.46 | 34.75 | 31.62 | 27.99 | 28.62 | ||
450 | N3 | 30.59 | 33.70 | 33.37 | 31.19 | 29.92 | ||
F值 F Value | 9.44* | 14.80* | 22.50* | 98.66** | 19.01* | |||
2005 | ‘科棉1号’ ‘Kemian 1’ | 0 | N0 | - | 26.38 | 23.00 | 23.92 | 22.16 |
240 | N4 | - | 33.65 | 30.37 | 28.46 | 27.74 | ||
480 | N5 | - | 35.34 | 33.16 | 34.16 | 32.18 | ||
F值 F Value | - | 40.43* | 223.45** | 47.85* | 45.57* | |||
‘美棉33B’ ‘Meimian 33B’ | 0 | N0 | - | 25.39 | 21.48 | 23.25 | 23.90 | |
240 | N4 | - | 33.57 | 30.73 | 27.95 | 25.54 | ||
480 | N5 | - | 37.50 | 36.82 | 36.35 | 28.64 | ||
F值 F Value | - | 28.55* | 169.91** | 222.30** | 22.82* |
图1 不同施氮水平下棉花(‘科棉1号’)冠层高光谱反射率(2005年) N0、N4、N5: 见表2 See Table 2
Fig.1 Hyperspectral reflectance of cotton canopy under different N rates (‘Kemian 1’,2005)
图2 不同棉花品种的叶片氮含量与冠层高光谱反射率的相关性(r(0.05,50)=0.273)
Fig.2 Correlation of leaf nitrogen concentration to canopy hyperspectral reflectance with different cotton cultivars
品种类型 Cultivar type | 高光谱参数 Hyperspectral parameter | 回归方程 Regression equation | 决定系数 R2 | 样本数 n |
---|---|---|---|---|
‘科棉1号’ `Kemian 1' | Average (760~850)/R700 | y=0.234 4x-1.208 1 | 0.807** | 24 |
Average (760~850)/R550 | y=0.162 6x+1.036 7 | 0.761** | 24 | |
NVD672 | y=0.019 4x-0.265 7 | 0.760** | 24 | |
Average (760~850)/Average (510~560) | y=0.195 9x+1.342 | 0.749** | 24 | |
PRI | y=-0.003 1x+0.084 5 | 0.724** | 24 | |
GNDVI | y=0.007 4x+0.470 2 | 0.723** | 24 | |
‘美棉33B’ `Meimian 33B' | Average (760~850)/R700 | y=0.2x-0.107 9 | 0.804** | 23 |
PRI | y=-0.002 6x+0.069 1 | 0.772** | 23 | |
NVD672 | y=0.015 9x-0.207 1 | 0.750** | 23 | |
Average (760~850)/Average (510~560) | y=0.168 4x+2.228 9 | 0.737** | 23 | |
Average (760~850)/R550 | y=0.136 3x+1.912 2 | 0.734** | 23 | |
GNDVI | y=0.005 8x+0.517 8 | 0.659** | 23 | |
‘中棉29’ `Zhongmian 29' | NVD672 | y=0.021 4x-0.279 9 | 0.614** | 50 |
Average (760~850)/R700 | y=0.160 8x-0.347 1 | 0.544** | 50 | |
PRI | y=-0.003 6x+0.121 | 0.528** | 49 | |
‘苏棉12’ `Sumian 12' | PRI | y=-0.004 5x+0.145 4 | 0.679** | 39 |
NVD672 | y=-0.000 1x+0.011 5 | 0.626** | 39 | |
Average (760~850)/R700 | y=0.231 6x-2.115 7 | 0.616** | 39 |
表3 不同棉花品种叶片氮含量(y)与主要高光谱参数(x)的定量关系
Table 3 Quantitative relationships of leaf nitrogen concentration (y) to main hyperspectral parameter (x) in different cotton cultivars
品种类型 Cultivar type | 高光谱参数 Hyperspectral parameter | 回归方程 Regression equation | 决定系数 R2 | 样本数 n |
---|---|---|---|---|
‘科棉1号’ `Kemian 1' | Average (760~850)/R700 | y=0.234 4x-1.208 1 | 0.807** | 24 |
Average (760~850)/R550 | y=0.162 6x+1.036 7 | 0.761** | 24 | |
NVD672 | y=0.019 4x-0.265 7 | 0.760** | 24 | |
Average (760~850)/Average (510~560) | y=0.195 9x+1.342 | 0.749** | 24 | |
PRI | y=-0.003 1x+0.084 5 | 0.724** | 24 | |
GNDVI | y=0.007 4x+0.470 2 | 0.723** | 24 | |
‘美棉33B’ `Meimian 33B' | Average (760~850)/R700 | y=0.2x-0.107 9 | 0.804** | 23 |
PRI | y=-0.002 6x+0.069 1 | 0.772** | 23 | |
NVD672 | y=0.015 9x-0.207 1 | 0.750** | 23 | |
Average (760~850)/Average (510~560) | y=0.168 4x+2.228 9 | 0.737** | 23 | |
Average (760~850)/R550 | y=0.136 3x+1.912 2 | 0.734** | 23 | |
GNDVI | y=0.005 8x+0.517 8 | 0.659** | 23 | |
‘中棉29’ `Zhongmian 29' | NVD672 | y=0.021 4x-0.279 9 | 0.614** | 50 |
Average (760~850)/R700 | y=0.160 8x-0.347 1 | 0.544** | 50 | |
PRI | y=-0.003 6x+0.121 | 0.528** | 49 | |
‘苏棉12’ `Sumian 12' | PRI | y=-0.004 5x+0.145 4 | 0.679** | 39 |
NVD672 | y=-0.000 1x+0.011 5 | 0.626** | 39 | |
Average (760~850)/R700 | y=0.231 6x-2.115 7 | 0.616** | 39 |
图3 不同棉花品种叶片氮含量与比值植被指数(RVI [average(760-850),700])的关系 A: ‘苏棉12’ ‘Sumian 12’ B:‘中棉29’ ‘Zhongmian 29’ C:‘科棉1号’ ‘Kemian 1’ D:‘美棉33B’ ‘Meimian 33B’
Fig.3 Relationships of leaf nitrogen concentration to ratio vegetation index (RVI [average (760-850),700]) of hyperspectral index with different cotton cultivars
图4 基于品种组合的棉花叶片氮含量与比值植被指数(RVI [average (760~850), 700])的关系
Fig.4 Relationships of leaf nitrogen concentration to ratio vegetation index (RVI [average (760-850), 700]) of hyperspectral index with combined cotton cultivars
[1] | Baret F, Guyot G, Major DJ (1989). TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proceedings of the 12th Canadian Symposium on Remote Sensing and IGARSS'89. Geoscience and Remote Sensing Society of Institute of Electrical and Electronics Engineers. Vancouver, Canada, 3,1355-1358. |
[2] | Blackmer TM, Schepers JS, Meyer GE (1994). Remote sensing to detect nitrogen deficiency in corn. In: Robert PC, Rust RH, Larson WEeds. Proceedings of the Second International Conference on Site-specific Management for Agricultural Systems. ASA/CSSA/SSSA, Madison, WI,505-512. |
[3] |
Blackmer TM, Schepers JS, Varvel GE, Walter-Shea EA (1996). Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy Journal, 88,1-5.
DOI URL |
[4] | Bronson KF, Chua TT, Booker JD, Keeling JW, Lascano RJ (2003). In-season nitrogen status sensing in irrigated cotton.Ⅱ.Leaf nitrogen and biomass. Soil Science Society of America Journal, 67,1439-1448. |
[5] | Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80,76-87. |
[6] | Gitelson AA, Merzlyak MN (1996). Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148,494-500. |
[7] | Jiang GY (蒋桂英), Li SK (李少昆), Wang DW (王登伟), Chen YF (陈永芳), Lei YW (雷永雯) (2002). Studies and advances on application of remote sensing technique to cotton. Journal of Xinjiang Agricultural University (新疆农业大学学报), 25(3),76-79. (in Chinese with English abstract) |
[8] | Li Q (李强), Zhao W (赵伟) (2001). Date Processing and Application in MATLAB (MATLAB数据处理与应用). National Defense Industry Press, Beijing,1. |
[9] | Maas SJ (1997). Structure and reflectance of irrigated cotton leaf canopies. Agronomy Journal, 89,54-59. |
[10] | Ma YQ (马亚琴), Bao AM (包安明), Wang DW (王登伟), Sun L (孙莉), Huang CY (黄春燕), Feng XW (冯宪伟), Xiao CH (肖春华), Yang XJ (杨新军) (2003). Estimating of the total nitrogen content (TN) in cotton canopy by using hyperspectral remote sensing under water stress. Arid Land Geography (干旱区地理), 4,26-30. (in Chinese with English abstract) |
[11] | Mutanga O, Skidmore AK, van Wieren S (2003). Discriminating tropical grass ( Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. ISPRS Journal of Photogrammetry and Remote Sensing, 57,263-272. |
[12] | Pearson RL, Miller DL (1972). Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie, Pawnee national grasslands, Colorado. In: Proceeding of the 8th International Symposium on Remote Sensing of Environment. Environment Research Institute of Michigan, Ann Arbor, Michigan, USA,1357-1381. |
[13] | Peñuelas J, Filella I, Gamon JA (1995). Assessment of photosynthetic radiation-use-efficiency with spectral reflectance. New Phytologist, 131, 291-296. |
[14] | Stone ML, Solie JB, Raun WR, Whitney RW, Taylor SL, Ringer JD (1996). Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of the American Society of Agricultural Engineers, 39,1623-1631. |
[15] | Thomas JR, Gausman HW (1977). Leaf reflectance vs. leaf chlorophyll and carotenoid concentration for eight crops. Agronomy Journal, 69,799-802. |
[16] | Wang DW (王登伟), Li SK (李少昆), Tian QJ (田庆玖), Huang CY (黄春燕), Cao LP (曹连莆), Xiao CH (肖春华), Ma YQ (马亚琴), Yang XJ (杨新军) (2003). Estimating of main cultivation physiology parameters of cotton by using hyperspectral remote sensing. Scientia Agricultura Sinica (中国农业科学), 36,770-774. (in Chinese with English abstract) |
[17] | Wang RC (王人潮), Chen MZ (陈铭臻), Jiang HX (蒋亨显) (1993). Studies on agronomic mechanism of the rice yield estimation by remote sensing.Ⅰ. The rice reflectance characteristics of different nitrogen levels and the selection of their sensitive bands. Journal of Zhejiang University(Agriculture and Life Sciences) (浙江农业大学学报(农业与生命科学版)), 19(Suppl.),7-14. (in Chinese with English abstract) |
[18] | Xue LH (薛利红), Cao WX (曹卫星), Luo WH (罗卫红), Jiang D (姜东), Meng YL (孟亚利), Zhu Y (朱艳) (2003). Diagnosis of nitrogen status in rice leaves with the canopy spectral reflectance. Scientia Agricultura Sinica (中国农业科学), 36,807-812. (in Chinese with English abstract) |
[19] | Xue LH (薛利红), Cao WX (曹卫星), Luo WH (罗卫红), Zhang X (张宪) (2004). Correlation between leaf nitrogen status and canopy spectral characteristics in wheat. Acta Phytoecologica Sinica (植物生态学报), 28,172-177. (in Chinese with English abstract) |
[20] | Zhao DL, Reddy KR, Kakani VG, Read JJ, Koti S (2005). Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agronomy Journal, 97,89-98. |
[21] | Zhou QF (周启发), Wang RC (王人潮) (1993). A preliminary study on the relationship between the nitrogen levels and the spectral characteristics of early rice leaves. Journal of Zhejiang University(Agriculture and Life Sciences) (浙江农业大学学报(农业与生命科学版)), 19(Suppl.),40-46. (in Chinese with English abstract) |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[3] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[4] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[5] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[6] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[7] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[8] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[9] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[10] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[11] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[12] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[13] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[14] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[15] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19