植物生态学报 ›› 2011, Vol. 35 ›› Issue (9): 946-954.DOI: 10.3724/SP.J.1258.2011.00946
韩天丰1, 周国逸2,1,*(), 李跃林2, 刘菊秀2, 张德强2
收稿日期:
2011-04-18
接受日期:
2011-06-21
出版日期:
2011-04-18
发布日期:
2011-09-01
通讯作者:
周国逸
作者简介:
*(E-mail:gyzhou@scib.ac.cn)
HAN Tian-Feng1, ZHOU Guo-Yi2,1,*(), LI Yue-Lin2, LIU Ju-Xiu2, ZHANG De-Qiang2
Received:
2011-04-18
Accepted:
2011-06-21
Online:
2011-04-18
Published:
2011-09-01
Contact:
ZHOU Guo-Yi
摘要:
量化森林土壤呼吸(RS)及其组分对准确地评估森林土壤碳吸存极其重要。该文以鼎湖山南亚热带季风常绿阔叶林及其演替系列针阔叶混交林和马尾松(Pinus massoniana)林为研究对象, 采用挖壕沟法结合静态气室CO2测定法对这3种林分类型的RS进行分离量化。结果表明: 鼎湖山3种森林演替系列上的森林RS及其组分(自养呼吸RA、异养呼吸RH)均呈现出明显的季节动态, 表现为夏季最高、冬季最低的格局。在呼吸总量上, 季风常绿阔叶林显著高于针阔叶混交林和马尾松林, 但混交林与马尾松林之间差异不显著; RA除季风常绿阔叶林显著大于针阔叶混交林外, 其余林分之间差异不显著; 对于RH来说, 3个林分之间均无显著差异。随着森林正向演替的进行, 由马尾松林至针阔叶混交林至季风常绿阔叶林, RA对土壤总呼吸的年平均贡献率分别为(39.48 ± 15.49)%、(33.29 ± 17.19)%和(44.52 ± 10.67)%, 3个林分之间差异不显著。方差分析结果表明, 土壤温度是影响RS及其组分的主要环境因子, 温度与RS及其组分呈显著的指数关系; 土壤含水量对RS的影响不显著, 甚至表现为轻微的抑制现象, 但未达到显著性水平。对温度敏感性指标Q10值的分析表明, 3个林分均为RA的温度敏感性最大, RH的温度敏感性最小。
韩天丰, 周国逸, 李跃林, 刘菊秀, 张德强. 中国南亚热带森林不同演替阶段土壤呼吸的分离量化. 植物生态学报, 2011, 35(9): 946-954. DOI: 10.3724/SP.J.1258.2011.00946
HAN Tian-Feng, ZHOU Guo-Yi, LI Yue-Lin, LIU Ju-Xiu, ZHANG De-Qiang. Partitioning soil respiration in lower subtropical forests at different successional stages in southern China. Chinese Journal of Plant Ecology, 2011, 35(9): 946-954. DOI: 10.3724/SP.J.1258.2011.00946
样地 Site | 马尾松针叶林 Coniferous masson pine forest (MPF) | 针阔叶混交林 Coniferous and broad- leaved mixed forest (MF) | 季风常绿阔叶林 Monsoon evergreen broad- leaved forest (MEBF) |
---|---|---|---|
演替阶段 Successional stage | 初级 Initial | 过渡 Transitional | 顶级 Climax |
生物量 Biomass (t·hm-2)a | 122 | 260 | 380 |
细根生物量 Fine root biomass (mg C·hm-2)b | 1.9 | 2.8 | 4.9 |
凋落物量 Litterfall production (t·hm-2·a-1)a | 3.31 | 8.50 | 8.28 |
土壤微生物生物量 Soil microbial biomass (t-1 dry soil)c | 1.2 | 1.4 | 2.1 |
乔木密度 Tree density (No.·hm-2)d | 767 | 1 933 | 1 729 |
平均树高 Mean tree height (m)d | 5.81 | 5.46 | 7.02 |
平均胸径 Mean diameter at breast height (cm)d | 12.16 | 7.32 | 10.18 |
叶面积指数 Leaf area indexa | 3.6 | 4.8 | 6.2 |
郁闭度 Canopy coverage (%)a | 50 | >90 | >95 |
优势种 Dominant speciese | 马尾松 Pinus massoniana, 三叉苦 Evodia lept, 桃金娘 Rhodomyrtus tomentosa | 木荷 Schima superba, 锥栗 Castanopsis chinensis, 马尾松 Pinus massoniana | 锥栗 Castanopsis chinensis, 木荷 Schima superba, 厚壳桂 Cryp tocarya chinensis |
表1 鼎湖山自然保护区不同演替系列的林分特征(平均值)
Table 1 Stand characteristics of forests at different successional stages in Dinghushan Nature Reserve (mean)
样地 Site | 马尾松针叶林 Coniferous masson pine forest (MPF) | 针阔叶混交林 Coniferous and broad- leaved mixed forest (MF) | 季风常绿阔叶林 Monsoon evergreen broad- leaved forest (MEBF) |
---|---|---|---|
演替阶段 Successional stage | 初级 Initial | 过渡 Transitional | 顶级 Climax |
生物量 Biomass (t·hm-2)a | 122 | 260 | 380 |
细根生物量 Fine root biomass (mg C·hm-2)b | 1.9 | 2.8 | 4.9 |
凋落物量 Litterfall production (t·hm-2·a-1)a | 3.31 | 8.50 | 8.28 |
土壤微生物生物量 Soil microbial biomass (t-1 dry soil)c | 1.2 | 1.4 | 2.1 |
乔木密度 Tree density (No.·hm-2)d | 767 | 1 933 | 1 729 |
平均树高 Mean tree height (m)d | 5.81 | 5.46 | 7.02 |
平均胸径 Mean diameter at breast height (cm)d | 12.16 | 7.32 | 10.18 |
叶面积指数 Leaf area indexa | 3.6 | 4.8 | 6.2 |
郁闭度 Canopy coverage (%)a | 50 | >90 | >95 |
优势种 Dominant speciese | 马尾松 Pinus massoniana, 三叉苦 Evodia lept, 桃金娘 Rhodomyrtus tomentosa | 木荷 Schima superba, 锥栗 Castanopsis chinensis, 马尾松 Pinus massoniana | 锥栗 Castanopsis chinensis, 木荷 Schima superba, 厚壳桂 Cryp tocarya chinensis |
图1 土壤呼吸(RS)和异养呼吸(RH)的季节变化(平均值±标准偏差, n = 9)。 MEBF, 季风常绿阔叶林; MF, 针阔叶混交林; MPF, 马尾松针叶林。
Fig. 1 Seasonal changes of soil respiration (RS) and heterotrophic respiration (RH) (mean ± SD, n = 9). MEBF, monsoon evergreen broad-leaved forest; MF, coniferous and broad- leaved mixed forest; MPF, coniferous masson pine forest.
森林类型 Forest type | 土壤呼吸 Soil respiration RS (μmol CO2·m-2·s-1) | 异养呼吸 Heterotropic respiration RH (μmol CO2·m-2·s-1) | 自养呼吸 RA (μmol CO2·m-2·s-1) |
---|---|---|---|
2009 | |||
马尾松针叶林 MPF | 2.34 ± 0.63a | 1.55 ± 0.67a | 0.79 ± 0.51a |
针阔叶混交林 MF | 2.45 ± 0.85a | 1.78 ± 0.88a | 0.66 ± 0.39a |
季风常绿阔叶林 MEBF | 2.60 ± 0.66a | 1.88 ± 0.86a | 0.72 ± 0.45a |
2010 | |||
马尾松针叶林 MPF | 4.16 ± 1.59a | 2.51 ± 0.95a | 1.65 ± 0.98ab |
针阔叶混交林 MF | 3.89 ± 2.00a | 2.57 ± 1.06a | 1.33 ± 1.29b |
季风常绿阔叶林 MEBF | 4.90 ± 2.48b | 2.69 ± 1.15a | 2.21 ± 1.61a |
表2 不同森林类型原状与挖壕沟处理的土壤呼吸及自养呼吸(RA) (平均值±标准偏差)
Table 2 Soil respiration of untrenched plot and trenched plots and autotrophic respiration (RA) at different forest types (mean ± SD)
森林类型 Forest type | 土壤呼吸 Soil respiration RS (μmol CO2·m-2·s-1) | 异养呼吸 Heterotropic respiration RH (μmol CO2·m-2·s-1) | 自养呼吸 RA (μmol CO2·m-2·s-1) |
---|---|---|---|
2009 | |||
马尾松针叶林 MPF | 2.34 ± 0.63a | 1.55 ± 0.67a | 0.79 ± 0.51a |
针阔叶混交林 MF | 2.45 ± 0.85a | 1.78 ± 0.88a | 0.66 ± 0.39a |
季风常绿阔叶林 MEBF | 2.60 ± 0.66a | 1.88 ± 0.86a | 0.72 ± 0.45a |
2010 | |||
马尾松针叶林 MPF | 4.16 ± 1.59a | 2.51 ± 0.95a | 1.65 ± 0.98ab |
针阔叶混交林 MF | 3.89 ± 2.00a | 2.57 ± 1.06a | 1.33 ± 1.29b |
季风常绿阔叶林 MEBF | 4.90 ± 2.48b | 2.69 ± 1.15a | 2.21 ± 1.61a |
森林类型 Forest type | 自养呼吸 RA (g C·m-2·a-1) | 异养呼吸 RH (g C·m-2·a-1) | 土壤呼吸 RS (g C·m-2·a-1) | 自养呼吸的贡献率 RC (%) |
---|---|---|---|---|
马尾松针叶林 MPF | 558.94ab | 856.92a | 1692.1ab | 39.48 ± 15.49ab |
针阔叶混交林 MF | 448.21a | 898.28a | 1346.5a | 33.29 ± 17.19a |
季风常绿阔叶林 MEBF | 753.34b | 938.72a | 1415.9b | 44.52 ± 10.67b |
表3 不同森林类型的土壤呼吸年通量及其组分的贡献率
Table 3 Annual soil respiration (RS) and the contribution of autotrophic respiration (RA) or heterotrophic respiration (RH) to RS at different forest types
森林类型 Forest type | 自养呼吸 RA (g C·m-2·a-1) | 异养呼吸 RH (g C·m-2·a-1) | 土壤呼吸 RS (g C·m-2·a-1) | 自养呼吸的贡献率 RC (%) |
---|---|---|---|---|
马尾松针叶林 MPF | 558.94ab | 856.92a | 1692.1ab | 39.48 ± 15.49ab |
针阔叶混交林 MF | 448.21a | 898.28a | 1346.5a | 33.29 ± 17.19a |
季风常绿阔叶林 MEBF | 753.34b | 938.72a | 1415.9b | 44.52 ± 10.67b |
图3 自养呼吸对土壤总呼吸的贡献率(平均值±标准偏差)。 MEBF、MF和MPF见图1。
Fig. 3 Contribution of autotrophic respiration to soil total respiration (mean ± SD). MEBF, MF and MPF see Fig. 1.
森林类型 Forest type | 土壤呼吸 Soil respiration | 异养呼吸 Heterotrophic respiration | 自养呼吸 Autotrophic respiration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Q10 | R2 | p | Q10 | R2 | p | Q10 | R2 | p | |||
马尾松针叶林 Coniferous masson pine forest | 2.36 | 0.87 | <0.001 | 2.16 | 0.65 | <0.001 | 3.16 | 0.49 | <0.001 | ||
针阔叶混交林 Coniferous and broad-leaved mixed forest | 2.39 | 0.42 | <0.001 | 2.18 | 0.40 | <0.001 | 3.56 | 0.33 | <0.001 | ||
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 2.95 | 0.88 | <0.001 | 2.25 | 0.72 | <0.001 | 4.02 | 0.84 | <0.001 |
表4 土壤呼吸及其组分与土壤温度的相关关系
Table 4 Relationships between soil respiration and its components with soil temperature
森林类型 Forest type | 土壤呼吸 Soil respiration | 异养呼吸 Heterotrophic respiration | 自养呼吸 Autotrophic respiration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Q10 | R2 | p | Q10 | R2 | p | Q10 | R2 | p | |||
马尾松针叶林 Coniferous masson pine forest | 2.36 | 0.87 | <0.001 | 2.16 | 0.65 | <0.001 | 3.16 | 0.49 | <0.001 | ||
针阔叶混交林 Coniferous and broad-leaved mixed forest | 2.39 | 0.42 | <0.001 | 2.18 | 0.40 | <0.001 | 3.56 | 0.33 | <0.001 | ||
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 2.95 | 0.88 | <0.001 | 2.25 | 0.72 | <0.001 | 4.02 | 0.84 | <0.001 |
图4 不同森林类型土壤呼吸及其组分与土壤温度的关系。 MEBF、MF和MPF见图1。RA, 自养呼吸; RH, 异养呼吸; RS, 土壤呼吸。
Fig. 4 Correlation between soil respiration and its components and soil temperature at different forest types. MEBF, MF and MPF see Fig. 1. RA, autotrophic respiration; RH, heterotrophic respiration; RS, soil respiration.
森林类型 Forest type | 土壤温度 ST (℃) | 土壤含水量 SWC (%) | |||
---|---|---|---|---|---|
原状 Control | 挖壕沟 Trenched | 原状 Control | 挖壕沟 Trenched | ||
马尾松针叶林 Coniferous masson pine forest | 22.03a | 22.07a | 16.17a | 20.21a* | |
针阔叶混交林 Coniferous and broad-leaved mixed forest | 20.94b | 20.96b | 21.08b | 26.04b* | |
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 20.83b | 20.85b | 25.61b | 29.94b |
表5 不同森林类型中原状与挖壕沟处理样方的土壤温度与土壤含水量
Table 5 Soil temperature (ST) and soil water content (SWC) in the control and trenched plots at different forest types
森林类型 Forest type | 土壤温度 ST (℃) | 土壤含水量 SWC (%) | |||
---|---|---|---|---|---|
原状 Control | 挖壕沟 Trenched | 原状 Control | 挖壕沟 Trenched | ||
马尾松针叶林 Coniferous masson pine forest | 22.03a | 22.07a | 16.17a | 20.21a* | |
针阔叶混交林 Coniferous and broad-leaved mixed forest | 20.94b | 20.96b | 21.08b | 26.04b* | |
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 20.83b | 20.85b | 25.61b | 29.94b |
图5 鼎湖山不同森林演替系列土壤含水量的季节变化(平均值±标准偏差)。 MEBF、MF和MPF见图1。
Fig. 5 Seasonal changes of soil water content of different forest successional series in Dinghushan (mean ± SD). MEBF, MF and MPF see Fig. 1.
[1] |
Bond-Lamberty B, Wang CK, Gower ST (2004). A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology, 10, 1756-1766.
DOI URL |
[2] |
Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572.
DOI URL |
[3] | Borken W, Xu YJ, Davidson EA, Beese F (2002). Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology, 8, 1205-1216. |
[4] |
Buchmann N (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry, 32, 1625-1635.
DOI URL |
[5] |
Campbell JL, Law BE (2005). Forest soil respiration across three climatically distinct chronosequences in Oregon. Biogeochemistry, 73, 109-125.
DOI URL |
[6] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
URL PMID |
[7] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[8] |
Deng Q, Zhou G, Liu J, Liu S, Duan H, Zhang D (2010). Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences, 7, 315-328.
DOI URL |
[9] | Ewel KC, Cropper WP Jr, Gholz HL (1987). Soil CO2 evolution in Florida slash pine plantations. I. Changes through time. Canadian Journal of Forest Research, 17, 325-329. |
[10] | Fang YT ( 方运霆), Mo JM ( 莫江明), Brown S, Zhou GY ( 周国逸), Zhang QM ( 张倩媚), Li DJ ( 李德军) (2004). Storage and distribution of soil organic carbon in Dinghushan Biosphere Reserve. Acta Ecologica Sinica (生态学报), 24, 135-142. (in Chinese with English abstract) |
[11] | Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C (2001). Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecological Applications, 11, 1395-1411. |
[12] | Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146. |
[13] | Hibbard KA, Law BE, Reichstein M, Sulzman J (2005). An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry, 73, 29-70. |
[14] |
Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792.
URL PMID |
[15] | Irvine J, Law BE (2002). Contrasting soil respiration in young and old-growth ponderosa pine forests. Global Change Biology, 8, 1183-1194. |
[16] |
Jiang LF, Shi FC, Li B, Luo YQ, Chen JQ, Chen JK (2005). Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China. Tree Physiology, 25, 1187-1195.
URL PMID |
[17] | Kelting DL, Burger JA, Edwards GS (1998). Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biology & Biochemistry, 30, 961-968. |
[18] |
Klopatek JM (2002). Belowground carbon pools and processes in different age stands of Douglas-fir. Tree Physiology, 22, 197-204.
DOI URL PMID |
[19] |
Kutsch WL, Staack A, Wötzel J, Middelhoff U, Kappen L (2001). Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150, 157-168.
DOI URL |
[20] | Kuzyakov Y, Cheng W (2001). Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology & Biochemistry, 33, 1915-1925. |
[21] | Landsberg JJ, Gower ST (1997). Applications of Physiological Ecology to Forest Management. Academic Press, San Diego, USA. |
[22] |
Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY, Robitaille G (2003). Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Canadian Journal of Forest Research, 33, 1744-1753.
DOI URL |
[23] |
Lee MS, Nakane K, Nakatsubo T, Koizumi H (2003). Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant and Soil, 255, 311-318.
DOI URL |
[24] |
Lee NY, Koo JW, Noh NJ, Kim J, Son Y (2010). Autotrophic and heterotrophic respiration in needle fir and Quercus- dominated stands in a cool-temperate forest, central Korea. Journal of Plant Research, 123, 485-495.
URL PMID |
[25] |
Liu XZ ( 刘兴诏), Zhou GY ( 周国逸), Zhang DQ ( 张德强), Liu SZ ( 刘世忠), Chu GW ( 褚国伟), Yan JH ( 闫俊华) (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology (植物生态学报), 34, 64-71. (in Chinese with English abstract )
DOI URL |
[26] |
Ngao J, Longdoz B, Granier A, Epron D (2007). Estimation of autotrophic and heterotrophic components of soil respiration by trenching is sensitive to corrections for root decomposition and changes in soil water content. Plant and Soil, 301, 99-110.
DOI URL |
[27] |
O’Connell KEB, Gower ST, Norman JM (2003). Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems, 6, 248-260.
DOI URL |
[28] | Peng SL ( 彭少麟), Wang BS ( 王伯荪) (1993). Forest succession at Dinghushan, Guangdong, China. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 2, 34-42. (in Chinese with English abstract) |
[29] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99. |
[30] | Raich J, Tufekcioglu A (2000). Vegetation and soil respiration correlations and controls. Biogeochemistry, 48, 71-90. |
[31] | Rey A, Pegoraro E, Tedeschi V, de Parri I, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology, 8, 851-866. |
[32] | Ryan MG, Law BE (2005). Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73, 3-27. |
[33] |
Saiz G, Byrne KA, Butterbach-Bahl K, Kiese R, Blujdea V, Farrell EP (2006). Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology, 12, 1007-1020.
DOI URL |
[34] | Tang XL, Zhou GY, Liu SG, Zhang DQ, Liu SZ, Li J, Zhou CY (2006). Dependence of soil respiration on soil temperature and soil moisture in successional forests in southern China. Journal of Integrative Plant Biology, 48, 654-663. |
[35] | Wang CK, Gower ST, Wang YH, Zhao HX, Yan P, Bond- Lamberty BP (2001). The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biology, 7, 719-730 |
[36] | Wang CK, Yang JY, Zhang QZ (2006). Soil respiration in six temperate forests in China. Global Change Biology, 12, 2013-2114. |
[37] | Widén B, Majdi H (2001). Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Canadian Journal of Forest Research, 31, 786-796. |
[38] | Yan JH, Wang YP, Zhou GY, Zhang DQ (2006). Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology, 12, 810-821. |
[39] | Zhang DQ ( 张德强), Sun XM ( 孙晓敏), Zhou GY ( 周国逸), Yan JH ( 闫俊华), Wang SY ( 王跃思), Liu SZ ( 刘世忠), Zhou CY ( 周存宇), Liu JX ( 刘菊秀), Tang XL ( 唐旭利), Li J ( 李炯), Zhang QM ( 张倩媚) (2006). Seasonal dynamics of soil CO2 effluxes with responses to environmental factors in lower subtropical forests of China. Science in China Series D: Earth Sciences (中国科学D辑: 地球科学), 49, 139-149. (in Chinese) |
[40] | Zhou LX ( 周丽霞), Yi WM ( 蚁伟民), Yi ZG ( 易志刚), Ding MM ( 丁明懋) (2002). Soil microbial characteristics of several vegetations at different elevation in Dinghushan Biosphere Reserve. Trop and Subtrop Forest Ecosystem Research (热带亚热带森林生态系统研究), 9, 169-174. (in Chinese with English abstract) |
[41] | Zhou XH, Wan SQ, Luo YQ (2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[4] | 李伟晶, 陈世苹, 张兵伟, 谭星儒, 王珊珊, 游翠海. 半干旱草原土壤呼吸组分区分与菌根呼吸的贡献[J]. 植物生态学报, 2018, 42(8): 850-862. |
[5] | 王清奎, 李艳鹏, 张方月, 贺同鑫. 短期施氮肥降低杉木幼林土壤的根系和微生物呼吸[J]. 植物生态学报, 2015, 39(12): 1166-1175. |
[6] | 李悦, 刘颖慧, 申卫军, 徐霞, 田玉强. 内蒙古克氏针茅草原土壤异养呼吸对土壤温度和水分变化的响应[J]. 植物生态学报, 2014, 38(3): 238-248. |
[7] | 范跃新,杨玉盛,郭剑芬,杨智杰,陈光水,谢锦升,钟小剑,徐玲琳. 中亚热带常绿阔叶林不同演替阶段土壤呼吸及其温度敏感性的变化[J]. 植物生态学报, 2014, 38(11): 1155-1165. |
[8] | 吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红. 米槠和杉木人工林土壤呼吸及其组分分析[J]. 植物生态学报, 2014, 38(1): 45-53. |
[9] | 徐丽,于书霞,何念鹏,温学发,石培礼,张扬建,代景忠,王若梦. 青藏高原高寒草地土壤碳矿化及其温度敏感性[J]. 植物生态学报, 2013, 37(11): 988-997. |
[10] | 代景忠, 卫智军, 何念鹏, 王若梦, 温学华, 张云海, 赵小宁, 于贵瑞. 封育对羊草草地土壤碳矿化激发效应和温度敏感性的影响[J]. 植物生态学报, 2012, 36(12): 1226-1236. |
[11] | 罗璐, 申国珍, 谢宗强, 周利光. 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性[J]. 植物生态学报, 2011, 35(7): 722-730. |
[12] | 周文嘉, 石兆勇, 王娓. 中国东部亚热带森林土壤呼吸的时空格局[J]. 植物生态学报, 2011, 35(7): 731-740. |
[13] | 马骏, 唐海萍. 内蒙古农牧交错区不同土地利用方式下土壤呼吸速率及其温度敏感性变化[J]. 植物生态学报, 2011, 35(2): 167-175. |
[14] | 刘效东, 乔玉娜, 周国逸. 土壤有机质对土壤水分保持及其有效性的控制作用[J]. 植物生态学报, 2011, 35(12): 1209-1218. |
[15] | 张文丽, 刘菊, 王建柱, 陈芳清. 三峡库区不同林龄人工橘林土壤异养呼吸及其温度敏感性[J]. 植物生态学报, 2010, 34(11): 1265-1273. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19